如图,在△ABC中,D是BC边上的点,过点D作DE⊥BC交AC边于点E,垂足为D,过点D作DF⊥AB,垂足为F,连接EF,经过点D,E,F的⊙O与边BC另一个公共点为G.
(1)连接GF,求证△BGF∽△DEF;
(2)若AB=AC,BC=4,tanC=2,
①当CD=1.5时,求⊙O的半径;
②当点D在BC边上运动时,⊙O半径的最小值为22.

2
2
【考点】圆的综合题.
【答案】
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:1838引用:3难度:0.2
相似题
-
1.已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)
(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;
(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b.发布:2025/9/5 23:30:1组卷:96引用:3难度:0.5 -
2.如图(1),AB为⊙O的直径,C为⊙O上一点,若直线CD与⊙O相切于点
C,AD⊥CD,垂足为D.
(1)求证:△ADC∽△ACB;
(2)如果把直线CD向下平行移动,如图(2),直线CD交⊙O于C、G两点,若题目中的其他条件不变,且AG=4,BG=3,求tan∠DAC的值.发布:2025/9/6 4:30:1组卷:242引用:3难度:0.5 -
3.如图,平面直角坐标系xOy中,一次函数y=-x+b(b为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为1的⊙O与x轴正半轴相交于点C,与y轴正半轴相交于点D.
(1)如图1,点E是⊙O上的动点(与点C、D不重合),则∠DEC=
(2)当b=
(3)如图2,点E是⊙O上的动点,过点E作⊙O的切线交直线AB于点P,连接PO,当b=4时,求PE长的最小值.发布:2025/9/5 23:0:1组卷:161引用:1难度:0.3