已知正方形的边长为4,E,F分别为AD,BC的中点,以EF为棱将正方形ABCD折成如图所示的60°的二面角,点M在线段AB上.

(1)若M为AB的中点,且直线MF与由A,D,E三点所确定平面的交点为O,试确定点O的位置,并证明直线OD∥平面EMC;
(2)是否存在点M,使得直线DE与平面EMC所成的角为60°;若存在,求此时平面MEC与平面ECF的夹角的余弦值,若不存在,说明理由.
【考点】二面角的平面角及求法;直线与平面平行.
【答案】(1)O在EA延长线上,且AO=2,证明见解析;
(2)存在,点M为线段AB的靠近点A或B的四等分点,.
(2)存在,点M为线段AB的靠近点A或B的四等分点,
1
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:210引用:3难度:0.4
相似题
-
1.如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F分别是PA,PC的中点.
(Ⅰ)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;
(Ⅱ)设(Ⅰ)中的直线l与圆O的另一个交点为D,且点Q满足.记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角E-l-C的大小为β.求证:sinθ=sinαsinβ.DQ=12CP发布:2025/1/20 8:0:1组卷:907引用:12难度:0.1 -
2.如图,四边形ABCD为梯形,四边形CDEF为矩形,平面ABCD⊥平面CDEF,∠BAD=∠ADC=90°,AB=AD=DE=
CD,M为AE的中点.12
(1)证明:AC∥平面MDF;
(2)求平面MDF与平面BCF的夹角的大小.发布:2025/1/2 8:0:1组卷:141引用:1难度:0.6 -
3.如图,AB是圆O的直径,PA垂直于圆所在的平面,C是圆周上的点.
(1)求证:平面PAC⊥平面PBC;
(2)若AB=2,AC=2,PA=2,求二面角C-PB-A的度数.2发布:2025/1/28 8:0:2组卷:33引用:1难度:0.5