已知点A(x1,y1),B(x2,y2)在抛物线E:x2=2py上,l1,l2分别为过点A,B且与抛物线E相切的直线,l1,l2相交于点M(x0,y0).
条件①:点M在抛物线E的准线上;
条件②:l1⊥l2;
条件③:直线AB经过抛物线的焦点F.
(1)在上述三个条件中任选一个作为已知条件,另外两个作为结论,构成命题,并证明该命题成立;
(2)若p=2,直线y=x+4与抛物线E交于C、D两点,试问:在x轴正半轴上是否存在一点N,使得△CDN的外心在抛物线E上?若存在,求N的坐标;若不存在,请说明理由.
【考点】直线与圆锥曲线的综合;抛物线的焦点与准线.
【答案】(1)答案见解析;
(2)存在,.
(2)存在,
N
(
4
+
4
2
,
0
)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:202引用:1难度:0.2
相似题
-
1.点P在以F1,F2为焦点的双曲线
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O为坐标原点.E:x2a2-y2b2=1
(Ⅰ)求双曲线的离心率e;
(Ⅱ)过点P作直线分别与双曲线渐近线相交于P1,P2两点,且,OP1•OP2=-274,求双曲线E的方程;2PP1+PP2=0
(Ⅲ)若过点Q(m,0)(m为非零常数)的直线l与(2)中双曲线E相交于不同于双曲线顶点的两点M、N,且(λ为非零常数),问在x轴上是否存在定点G,使MQ=λQN?若存在,求出所有这种定点G的坐标;若不存在,请说明理由.F1F2⊥(GM-λGN)发布:2024/12/29 10:0:1组卷:72引用:5难度:0.7 -
2.已知两个定点坐标分别是F1(-3,0),F2(3,0),曲线C上一点任意一点到两定点的距离之差的绝对值等于2
.5
(1)求曲线C的方程;
(2)过F1(-3,0)引一条倾斜角为45°的直线与曲线C相交于A、B两点,求△ABF2的面积.发布:2024/12/29 10:30:1组卷:97引用:1难度:0.9 -
3.若过点(0,-1)的直线l与抛物线y2=2x有且只有一个交点,则这样的直线有( )条.
发布:2024/12/29 10:30:1组卷:26引用:5难度:0.7
相关试卷