如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC上,以点A为中心,将线段AD逆时针旋转α得到线段AE,连接BE,DE.
(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD之间的数量关系,并证明;
(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.
【考点】旋转的性质;全等三角形的判定与性质.
【答案】(1)∠BAE=∠CAD,BE+MD=BM,理由见解析;
(2)NE=ND,理由见解析.
(2)NE=ND,理由见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:458引用:2难度:0.5
相似题
-
1.如图,D是△ABC内一点,∠BDC=90°,BD=CD,AB=20,AC=21,AD=
,则BC的长是 .1322发布:2025/6/14 22:30:1组卷:799引用:3难度:0.5 -
2.如图,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB绕点O按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则B1D的长为( )
发布:2025/6/14 22:0:2组卷:70引用:2难度:0.6 -
3.如图,在△ABC中,AB=3,BC=5,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为
发布:2025/6/14 20:30:2组卷:165引用:6难度:0.9