随着教育教学改革的不断深入,数学教学如何改革和发展,如何从“重教轻学”向自主学习探索为主的方向发展,是一个值得思考的问题.从数学的产生和发展历程来看分析,不外乎就是三个环节,【阅读观察】-【类比应用】-【拓展延伸】.下面同学们从这三个方面试着解决下列问题,
阅读观察:
二次根式的除法,要化去分母中的根号,需将分子、分母同乘以一个恰当的二次根式.
例如,化简12-1.
解:将分子、分母同乘以2+1得,12-1=2+1(2-1)(2+1)=2+1.
类比应用:
(1)化简:123-11=23+1123+11;
(2)化简:12+1+13+2+…+12021+2020.
拓展延伸:
宽与长的比是5-12的矩形叫黄金矩形.如图①,已知黄金矩形ABCD的宽AB=1.
(3)黄金矩形ABCD的长BC=5+125+12;
(4)如图②,将图①中的黄金矩形裁剪掉一个以AB为边的正方形ABEF,得到新的矩形DCEF,猜想矩形DCEF是否为黄金矩形,并证明你的结论:
(5)在图②中,请连接AE,则点D到线段AE的距离为 10+2410+24.
1
2
-
1
2
+
1
1
2
-
1
2
+
1
(
2
-
1
)
(
2
+
1
)
2
+
1
1
2
3
-
11
2
3
+
11
2
3
+
11
1
2
+
1
+
1
3
+
2
+
…
+
1
2021
+
2020
5
-
1
2
5
+
1
2
5
+
1
2
10
+
2
4
10
+
2
4
【考点】四边形综合题.
【答案】;;
2
3
+
11
5
+
1
2
10
+
2
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:137引用:2难度:0.3
相似题
-
1.连接四边形不相邻两个顶点的线段叫做四边形的对角线,如图1,四边形ABCD中线段AC、线段BD就是四边形ABCD的对角线.把对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.
(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD的平方和与BC,AD的平方和之间的数量关系.
猜想结论:(要求用文字语言叙述) .
写出证明过程(先画出图形,写出已知、求证).
(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.发布:2025/6/17 6:30:2组卷:304引用:2难度:0.5 -
2.如图1,在Rt△ABC中,∠ACB=90°,∠CAB=30°,点D在边AB上以CD为底边作等腰直角△CDP(点P,A在直线CD的两侧),射线CP交直线AB于点E.
(1)若点D是AB的中点,且BC=2,求DP的长;
(2)当△CDE是等腰三角形时,求∠BCE的度数;
(3)如图2,设AP=a,求四边形ADPC面积的最小值.(用含a的式子表示)发布:2025/6/17 4:30:1组卷:26引用:1难度:0.4 -
3.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A,点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF.连接BP、BH.(友情提醒:正方形的四条边都相等.即AB=BC=CD=DA;四个内角都是90°;即∠A=∠B=∠C=∠D=90°)
(1)求证:∠APB=∠BPH.
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论.
(3)设AP为x,求出的BE长.(用含x的代数式表示)发布:2025/6/17 6:0:2组卷:456引用:3难度:0.3