如图:在平面直角坐标系中,网格图由边长为1的小正方形构成,Rt△ABC的顶点分别是A(-1,3),B(-3,-1),C(-3,3).
(1)请在图1中作出△ABC关于点(-1,0)成中心对称的△A′B′C′,并分别写出A、C对应点的坐标A′(-1,-3)(-1,-3);C′(1,-3)(1,-3);
(2)设线段AB所在直线的函数表达式是y=kx+b,试写出不等式kx+b>2的解集x>-32x>-32.
(3)点M和N分别是直线AB和y轴上的动点,若以A′,C′,M,N为顶点的四边形是平行四边形,求满足条件的M点坐标.

3
2
3
2
【考点】一次函数综合题.
【答案】(-1,-3);(1,-3);x>-
3
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:588引用:4难度:0.3
相似题
-
1.在如图的平面直角坐标系中,直线n过点A(0,-2),且与直线l交于点B(3,2),直线l与y轴交于点C.
(1)求直线n的函数表达式;
(2)若△ABC的面积为9,求点C的坐标;
(3)若△ABC是等腰三角形,求直线l的函数表达式.发布:2025/5/24 9:0:1组卷:6355引用:10难度:0.1 -
2.如图1,在平面直角坐标系中,直线l1:y=x+1与直线l2:x=-2相交于点D,点A是直线l2上的动点,过点A作AB⊥l1于点B,点C的坐标为(0,3),连接AC,BC.设点A的纵坐标为t,△ABC的面积为s.
(1)当t=2时,请直接写出点B的坐标;
(2)s关于t的函数解析式为s=,其图象如图2所示,结合图1、2的信息,求出a与b的值;14t2+bt-54,t<-1或t>5a(t+1)(t-5),-1<t<5
(3)在l2上是否存在点A,使得△ABC是直角三角形?若存在,请求出此时点A的坐标和△ABC的面积;若不存在,请说明理由.发布:2025/5/24 12:30:1组卷:2213引用:3难度:0.1 -
3.如图,直线y=-x+1与x轴,y轴分别交于B,A两点,动点P在线段AB上移动,以P为顶点作∠OPQ=45°交x轴于点Q.
(1)求点A和点B的坐标;
(2)比较∠AOP与∠BPQ的大小,说明理由.
(3)是否存在点P,使得△OPQ是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.发布:2025/5/24 13:30:2组卷:1887引用:19难度:0.7