定义:我们把一组对边平行另一组对边相等且不平行的四边形叫做等腰梯形.
【性质初探】如图1,已知,▱ABCD,∠B=80°,点E是边AD上一点,连结CE,四边形ABCE恰为等腰梯形.求∠BCE的度数;
【性质再探】如图2,已知四边形ABCD是矩形,以BC为一边作等腰梯形BCEF,BF=CE,连结BE、CF.求证:BE=CF;
【拓展应用】如图3,▱ABCD的对角线AC、BD交于点O,AB=2,∠ABC=45°,过点O作AC的垂线交BC的延长线于点G,连结DG.若∠CDG=90°,求BC的长.

【考点】四边形综合题.
【答案】【性质初探】80°;
【性质再探】见解析;
【拓展应用】-.
【性质再探】见解析;
【拓展应用】
6
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:915引用:4难度:0.3
相似题
-
1.问题:如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为BC边上一点(不与点B、C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC.
求证:△ABD≌△ACE;
探索:如图2,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD2、BD2、CD2之间满足的数量关系,并证明你的结论;
应用:如图3,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=6,CD=2,求AD的长.发布:2025/6/10 18:0:1组卷:918引用:6难度:0.1 -
2.已知长方形ABCD中,AD=10cm,AB=6cm,点M在边CD上,由C往D运动,速度为1cm/s,运动时间为t秒,将△ADM沿着AM翻折至△AD′M,点D对应点为D′,AD′所在直线与边BC交于点P.
(1)如图1,当t=0时,求证:PA=PC;
(2)如图2,当t为何值时,点D′恰好落在边BC上;
(3)如图3,当t=3时,求CP的长.发布:2025/6/10 16:30:2组卷:825引用:4难度:0.3 -
3.【问题情境】
(1)如图1,四边形ABCD是正方形,点E是AD边上的一个动点,以CE为边在CE的右侧作正方形CEFG,连接DG、BE,则DG与BE的数量关系是;
【类比探究】
(2)如图2,四边形ABCD是矩形,AB=2,BC=4,点E是AD边上的一个动点,以CE为边在CE的右侧作矩形CEFG,且CG:CE=1:2,连接DG、BE.判断线段DG与BE有怎样的数量关系和位置关系,并说明理由;
【拓展提升】
(3)如图3,在(2)的条件下,连接BG,则2BG+BE的最小值为.发布:2025/6/10 17:0:2组卷:1126引用:8难度:0.4