试卷征集
加入会员
操作视频

小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.
(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.
(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC边上,N'在△ABC内,连接BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.小波把线段BN称为“波利亚线”.
(3)推理:证明图2中的四边形PQMN是正方形.
(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连接EQ,EM(如图3).当tan∠NBM=
3
4
时,猜想∠QEM的度数,并尝试证明.
请帮助小波解决“温故”、“推理”、“拓展”中的问题.

【考点】四边形综合题
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:1897引用:9难度:0.1
相似题
  • 1.[问题提出]
    正多边形内任意一点到各边距离之和与这个正多边形的半径R和中心角有什么关系?
    [问题探究]
    如图①,△ABC是等边三角形,半径OA=R,∠AOB是中心角,P是△ABC内任意一点,P到△ABC各边距离PF、PE、PD分别为h1、h2、h3,设△ABC的边长是a,面积为S.过点O作OM⊥AB.
    ∴OM=Rcos
    1
    2
    ∠AOB=Rcos60°,AM=Rsin
    1
    2
    ∠AOB=Rsin60°,AB=2AM=2Rsin60°
    ∴S△ABC=3S△AOB=3×
    1
    2
    AB×OM=3R2sin60°cos60°①
    ∵S△ABC又可以表示为
    1
    2
    a(h1+h2+h3)②
    联立①②得
    1
    2
    a(h1+h2+h3)=3R2sin60°cos60°
    1
    2
    ×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
    ∴h1+h2+h3=3Rcos60°

    [问题解决]
    如图②,五边形ABCDE是正五边形,半径OA=R,∠AOB是中心角,P是△ABC内任意一点,P到△ABC各边距PH、PM、PN、PI、PL分别为h1、h2、h3、h4、h5,参照(1)的分析过程,探究h1+h2+h3+h4+h5的值与正五边形ABCDE的半径R及中心角的关系.
    [性质应用]
    (1)正六边形(半径是R)内任意一点P到各边距离之和h1+h2+h3+h4+h5+h6=

    (2)如图③,正n边形(半径是R)内任意一点P到各边距离之和h1+h2+hn-1+hn=

    发布:2025/5/24 8:0:1组卷:149引用:1难度:0.2
  • 2.在五边形ABCDE中,四边形ABCD是矩形,△ADE是以E为直角顶点的等腰直角三角形.CE与AD交于点G,将直线EC绕点E顺时针旋转45°交AD于点F.
    (1)求证:∠AEF=∠DCE;
    (2)判断线段AB,AF,FC之间的数量关系,并说明理由;
    (3)若FG=CG,且AB=2,求线段BC的长.

    发布:2025/5/24 8:0:1组卷:328引用:2难度:0.2
  • 3.四边形ABCD为正方形,AB=8,点E为直线BC上一点,射线AE交对角线BD于点F,交直线CD于点G.
    (1)如图,点E在BC延长线上.求证:△CFG∽△EFC;
    (2)是否存在点E,使得△CFG是等腰三角形?若存在,求BE的长;若不存在,请说明理由.

    发布:2025/5/24 7:0:1组卷:57引用:1难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正