在平面直角坐标系中,点O为坐标系的原点,经过点B(3,6)的抛物线y=-12x2+bx与x轴的正半轴交于点A.

(1)求抛物线的解析式;
(2)如图1,点P为第一象限抛物线上的一点,且点P在抛物线对称轴的右侧,连接OP,AP,设点P的横坐标为t,△OPA的面积为S,求S与t的函数解析式(不要求写出自变量t的取值范围);
(3)如图2,在(2)的条件下,当S=352时,连接BP,点C为线段OA上的一点,过点C作x轴的垂线交BP的延长线于点D,连接OD,BC,若∠ODB-12∠CBD=∠POA,求点C的坐标.
y
=
-
1
2
x
2
+
bx
S
=
35
2
∠
ODB
-
1
2
∠
CBD
=∠
POA
【考点】二次函数综合题.
【答案】(1)y=-x2+x;
(2)S与t的函数解析式为S=-t2+t;
(3)点C的坐标为(6,0).
1
2
7
2
(2)S与t的函数解析式为S=-
7
4
49
4
(3)点C的坐标为(6,0).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/26 9:0:1组卷:39引用:1难度:0.1
相似题
-
1.在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=
x2-12x-2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.32
(1)若抛物线L2经过点(2,-12),求L2对应的函数表达式;
(2)当BP-CP的值最大时,求点P的坐标;
(3)设点Q是抛物线L1上的一个动点,且位于其对称轴的右侧.若△DPQ与△ABC相似,求其“共根抛物线”L2的顶点P的坐标.发布:2025/5/26 11:30:1组卷:3535引用:7难度:0.1 -
2.已知关于x的抛物线的解析式为y=x2-2ax+a2+2a+1.
(1)当a=1时,求抛物线的对称轴和顶点坐标;
(2)若抛物线与直线x=3交于点A,求点A到x轴的距离最小值;
(3)证明:不论a取何值时,抛物线的顶点都在直线y=2x+1上;
(4)直线y=2x+1与该抛物线相交,求抛物线在这条直线上所截线段的长度.发布:2025/5/26 11:30:1组卷:300引用:1难度:0.3 -
3.在平面直角坐标系中,已知抛物线
(a为常数,且a≠0)经过点A(2,m)、B(2a,n),设此抛物线在A和B之间(包括A、B两点)的部分为图象G.y=1ax2-2x-1
(1)当a=2时,抛物线的顶点坐标为 .
(2)m=;n=.
(3)当此抛物线的顶点在图象G上时.
①直接写出a的取值范围.
②当图象G对应函数值的最小值为-6时,求a的值以及此时图象G最高点的坐标.
(4)设点P(2a,-3-2a),以PB为边作正方形PBMN,其中MN和y轴在PB的同侧,若图象G在正方形PBMN内部的图象中,y随x的增大而增大或y随x的增大而减小时,直接写出a的取值范围.发布:2025/5/26 11:30:1组卷:187引用:2难度:0.3