如图1,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(-1,0),B(4,0),C(0,2)三点.
(1)求这个二次函数的解析式;
(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;
(3)如图2,点P是直线BC上方抛物线上的一点,过点P作PE⊥BC于点E,作PF∥y轴交BC于点F,求△PEF周长的最大值.

【考点】二次函数综合题.
【答案】(1)抛物线解析式为y=-x2+x+2;(2)点D的坐标为(3,2)或(-5,-18);(3)△PEF的周长最大值为2+.
1
2
3
2
6
5
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/24 7:30:1组卷:505引用:3难度:0.3
相似题
-
1.如图,抛物线y=ax2+3x+c(a≠0)与x轴交于点A(-2,0)和点B,与y轴交于点C(0,8),顶点为D,连接AC,CD,DB,直线BC与抛物线的对称轴l交于点E.
(1)求抛物线的解析式和直线BC的解析式;
(2)求四边形ABDC的面积;
(3)P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P的坐标;35
(4)在抛物线的对称轴l上是否存在点M,使得△BEM为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.发布:2025/5/24 13:0:1组卷:853引用:8难度:0.4 -
2.如图,抛物线y=ax2+6x+c交x轴于A、B两点,交y轴于点C,连接AC.直线y=x-5经过点B、C.
(1)求抛物线的解析式;
(2)P为抛物线上一点,连接AP,若AP将△ABC的面积分成相等的两部分,求P点坐标;
(3)在直线BC上是否存在点M,使直线AM与直线BC形成的夹角(锐角)等于∠ACB的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.发布:2025/5/24 13:0:1组卷:552引用:3难度:0.2 -
3.已知抛物线y=ax2+bx+c(a≠0)经过A(4,0)、B(-1,0)、C(0,4)三点.
(1)求抛物线的函数解析式;
(2)如图1,点D是在直线AC上方的抛物线的一点,DN⊥AC于点N,DM∥y轴交AC于点M,求△DMN周长的最大值及此时点D的坐标;
(3)如图2,点P为第一象限内的抛物线上的一个动点,连接OP,OP与AC相交于点Q,求的最大值.S△APQS△AOQ发布:2025/5/24 12:30:1组卷:3236引用:7难度:0.1