如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A,B两点,与y轴交于点C,点A的坐标是(3,0),抛物线的对称轴是直线x=1.
(1)求抛物线的函数表达式;
(2)连接BC,AC,若点P为第四象限内抛物线上一点,且∠PCA=∠BCO,求点P的坐标;
(3)过点C作x轴的平行线交抛物线于点D过D点作DE⊥x轴于点E得到矩形OCDE,将△OBC沿x轴向右平移,当B点与E重合时结束,设平移距离为t,△OBC与矩形OCDE重叠面积为S,请直接写出S与t的函数关系.

【考点】二次函数综合题.
【答案】(1)y=-x2+2x+3;
(2)点P(4,-5);
(3)S=
.
(2)点P(4,-5);
(3)S=
- 3 2 t 2 + 3 t ( 0 ≤ t < 1 ) |
3 2 ( 1 ≤ t < 2 ) |
3 2 t 2 - 9 t + 27 2 ( 2 ≤ t ≤ 3 ) |
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/24 7:0:1组卷:237引用:1难度:0.4
相似题
-
1.平面直角坐标系xOy中,抛物线y=ax2-3ax+1与y轴交于点A.
(1)求点A的坐标及抛物线的对称轴;
(2)当-1≤x≤2时,y的最大值为3,求a的值;
(3)已知点P(0,2),Q(a+1,1).若线段PQ与抛物线只有一个公共点,结合函数图象,求a的取值范围.发布:2025/5/24 10:30:2组卷:1465引用:13难度:0.2 -
2.如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点坐标为C(3,6),并与y轴交于点B(0,3),点A是对称轴与x轴的交点,直线AB与抛物线的另一个交点为D.
(1)求抛物线的解析式;
(2)连接BC、CD,判断△BCD是什么特殊三角形,并说明理由;
(3)在坐标轴上是否存在一点P,使△BDP为以BD为直角边的直角三角形?若存在,直接写出点P坐标;若不存在,说明理由.发布:2025/5/24 10:30:2组卷:294引用:1难度:0.1 -
3.如图,在平面直角坐标系中,抛物线y=ax2+bx-3与x轴交于A(-1,0),B(3,0)两点.
(1)求抛物线的解析式;
(2)已知点D(0,-1),点P为线段BC上一动点,连接DP并延长交抛物线于点H,连结BH,当四边形ODHB的面积为时,求点H的坐标;112
(3)已知点E为x轴上一动点,点Q为第二象限抛物线上一动点,以CQ为斜边作等腰直角三角形CEQ,请直接写出点E的坐标.发布:2025/5/24 10:30:2组卷:772引用:4难度:0.1