试卷征集
加入会员
操作视频
当前位置: 试题详情

在空中,取直线l为轴,直线l与l′相交于O点,夹角为30°,l′围绕l旋转得到以O为顶点,l′为母线的圆锥面.已知直线l∥平面α,l与α的距离为2,平面α与圆锥面相交得到双曲线Γ.在平面α内,以双曲线Γ的中心为原点,以双曲线的两个焦点所在直线为y轴,建立直角坐标系.
(Ⅰ)求双曲线Γ的方程;
(Ⅱ)在平面α内,以双曲线Γ的中心为圆心,半径为2
2
的圆记为曲线Γ′,在Γ′上任取一点P,过点P作双曲线Γ的两条切线交曲线Γ′于两点M、N,试证明线段MN的长为定值,并求出这个定值.

【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/11/26 8:0:2组卷:102引用:2难度:0.3
相似题
  • 1.在空间中,取直线l为轴,直线l′与l相交于点O,其夹角为α(α为锐角),l′围绕l旋转得到以O为顶点,l′为母线的圆锥面,任取平面π,若它与轴l交角为β(π与l平行时,记β=0),则:当
    π
    2
    β
    α
    时,平面π与圆锥面的交线为

    发布:2024/11/26 8:0:2组卷:68引用:1难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正