2021年是北京城市轨道交通新线开通的“大年”,开通线路的条、段数为历年最多.12月31日首班车起,地铁19号线一期开通试运营.地铁19号线一期全长约22公里,共设10座车站,此次开通牡丹园、积水潭、牛街、草桥、新发地、新宫共6座车站.在试运营期间,地铁公司随机选取了乘坐19号线一期的200名乘客,记录了他们的乘车情况,得到下表(单位:人):
下车站 上车站 |
牡丹园 | 积水潭 | 牛街 | 草桥 | 新发地 | 新宫 | 合计 |
牡丹园 | /// | 5 | 6 | 4 | 2 | 7 | 24 |
积水潭 | 12 | /// | 20 | 13 | 7 | 8 | 60 |
牛街 | 5 | 7 | /// | 3 | 8 | 1 | 24 |
草桥 | 13 | 9 | 9 | /// | 1 | 6 | 38 |
新发地 | 4 | 10 | 16 | 2 | /// | 3 | 35 |
新宫 | 2 | 5 | 5 | 4 | 3 | /// | 19 |
合计 | 36 | 36 | 56 | 26 | 21 | 25 | 200 |
(Ⅱ)在试运营期间,从在积水潭站上车的所有乘客中随机选取三人,设其中在牛街站下车的人数为X,求随机变量X的分布列以及数学期望;
(Ⅲ)为了研究各站客流量的相关情况,用ξ1表示所有在积水潭站上下车的乘客的上、下车情况,“ξ1=1”表示上车,“ξ1=0”表示下车.相应地,用ξ2,ξ3分别表示在牛街,草桥站上、下车情况,直接写出方差Dξ1,Dξ2,Dξ3大小关系.
【考点】离散型随机变量的方差与标准差.
【答案】(Ⅰ);
(Ⅱ)X的分布列为:
E(X)=1.
(Ⅲ)Dξ2<Dξ1<Dξ3.
1
3
(Ⅱ)X的分布列为:
x | 0 | 1 | 2 | 3 |
p | 8 27 |
12 27 |
6 27 |
1 27 |
(Ⅲ)Dξ2<Dξ1<Dξ3.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/12/29 12:30:1组卷:594引用:6难度:0.5
相似题
-
1.2020年5月28日,十三届全国人大三次会议表决通过了《中华人民共和国民法典》,自2021年1月1日起施行.它被称为“社会生活的百科全书”,是新中国第一部以法典命名的法律,在法律体系中居于基础性地位,也是市场经济的基本法某中学培养学生知法懂法,组织全校学生学习《中华人民共和国民法典》并组织知识竞赛.为了解学习的效果,现从高一,高二两个年级中各随机抽取20名学生的成绩(单位:分),绘制成如图所示的茎叶图:
根据学生的竞赛成绩,将其分为四个等级:测试成绩(单位:分) [60,70) [70,80) [80,90) [90,100) 等级 合格 中等 良好 优秀
(2)现从样本中成绩为良好的学生中随机抽取3人座谈,记X为抽到高二年级的人数,求X的分布列,数学期望与方差.发布:2024/12/29 12:30:1组卷:11引用:2难度:0.6 -
2.为选拔奥运会射击选手,对甲、乙两名射手进行选拔测试.已知甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量X,Y,甲、乙两名射手在每次射击中击中的环数均大于6环,且甲射中10,9,8,7环的概率分别为0.5,3a,a,0.1,乙射中10,9,8环的概率分别为0.3,0.3,0.2.
(1)求X,Y的分布列;
(2)求X,Y的数学期望与方差,以此比较甲、乙的射击技术并从中选拔一人.发布:2024/12/29 12:0:2组卷:49引用:3难度:0.6 -
3.已知一组样本数据x1,x2…x10,且
+x21+…+x22=180,平均数x210=4,则该组数据的方差为x发布:2024/12/29 13:30:1组卷:137引用:3难度:0.5