试卷征集
加入会员
操作视频

【学习新知】等边对等角是等腰三角形的性质定理.如图1,可以表述为:
∵AB=AC,
∴∠B=∠C.
【新知应用】已知:在△ABC中,AB=AC,若∠A=110°,则∠B=
35°
35°
;若∠B=70°,则∠A=
40°
40°


【尝试探究】如图2,四边形ABCD中,AB=AD,∠B+∠ADC=180°,若连接CA,则CA平分∠BCD.
某数学小组成员通过观察、实验,提出以下想法:延长CD到点E,使得DE=BC,连接AE,利用三角形全等的判定和等腰三角形的性质可以证明.请你参考他们的想法,写出完整的证明过程.
【拓展应用】借助上一问的尝试,继续探究:如图3所示,在五边形ABCDE中,AB=AE,BC+DE=CD,∠B+∠AED=180°,连接CA,CA平分∠BCD吗?请说明理由.

【考点】四边形综合题
【答案】35°;40°
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/4 20:30:1组卷:1061引用:11难度:0.1
相似题
  • 1.如图,点A、B、C、D在同一条直线上,点E、F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.
    (1)求证:四边形BFCE是平行四边形;
    (2)若AD=10,DC=4,∠FCB=60°,
    ①当四边形BFCE是菱形时,求EC的长;
    ②当EC=
    时,四边形BFCE是矩形.

    发布:2025/6/5 8:30:1组卷:113引用:1难度:0.5
  • 2.已知,四边形ABCD和四边形AEFG都是正方形,点H为CF的中点.
    (1)连接BH、GH,
    ①如图1,若点G在边AB上,猜想BH和GH的关系,并给予证明;
    ②若将图1中的正方形AEFG绕点A顺时针旋转,使点E落在对角线CA的延长线上,请你在图2中补全图形,猜想BH和GH的关系,并给予证明.
    (2)如图3,若AC=5,AF=3,将正方形AEFG绕点A旋转,连接EH.请你直接写出EH的取值范围

    发布:2025/6/5 7:30:1组卷:113引用:1难度:0.2
  • 3.已知,如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.
    (1)若DC=2,求证:四边形EFGH为正方形;
    (2)当点G在边CD上运动时,点F到直线CD的距离是否为定值?若是,请求出这个定值;若不是,请说明理由.
    (3)试说明当点C运动到何处时,△FCG的面积最小,并求出这个最小值.

    发布:2025/6/5 9:30:2组卷:25引用:1难度:0.2
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正