如图1,在平面直角坐标系中,点A,B的坐标分别为A(a、0),B(b,0),且a,b满足|a+6|+3a-2b+26=0,现将线段AB先向上平移4个单位长度,再向右平移6个单位长度得到线段CD,其中点A对应点为C,点B对应点为D,连接AC,BD.
(1)请直接写出A,B两点的坐标;
(2)如图2,点M是线段AC上的一个动点,点N是线段CD的一个定点,连接MN,MO,当点M在线段AC上移动时(不与A,C重合),探究∠DNM,∠OMN,∠MOB之间的数量关系,并说明理由;
(3)在坐标轴上是否存在点P,使三角形PBC的面积与三角形ABD的面积相等?若存在,请求出点P的坐标;若不存在,试说明理由.

3
a
-
2
b
+
26
【考点】几何变换综合题.
【答案】(1)A(-6,0),B(4,0);(2)∠DNM+∠OMN+∠MOB=360°;理由见解答;(3)(14,0)或(-6,0)或(0,14)或(0,-6).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/29 8:0:10组卷:402引用:5难度:0.4
相似题
-
1.如图①,在等边三角形ABC中,点D,E分别在边AB,AC上,且AD=AE,连接BE,CD,点M,N,P分别是BE,CD,BC的中点.
(1)观察猜想:△PMN的形状是 .
(2)探究证明:把△ADE绕点A按逆时针方向旋转到图②的位置,△PMN的形状是否发生改变?请说明理由.
(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AB=3,AD=1,请直接写出△PMN周长的最大值.发布:2025/6/14 22:30:1组卷:33引用:1难度:0.5 -
2.已知,点D是等边△ABC边AB所在直线AB上一动点(点D与点A、B不重合),连接DC,以DC为边在DC上方作等边△DCE,连接AE;
操作发现:
(1)如图(1),当动点D在AB上,你能发现线段AE与BD之间的数量关系吗?并证明你发现的结论;
(2)如图(2),在(1)的条件下,作△DCE关于直线CD对称的△DCF,连接BF,探究AE、BF与BC有何数量关系?并证明你探究的结论;
拓展探究:
(3)如图(3),当动点D在BA的延长线上,其他作法与(2)相同,当AE=5,BF=2时,求BC的长度.发布:2025/6/14 15:30:1组卷:134引用:2难度:0.2 -
3.如图,在△ABC与△ADE中,∠BAC=∠DAE=90°,AB=AC=4,AD=AE=2.连接CD,BE,F,G,H分别是BE,CD,DE的中点,连接GF,FH,GH.
(1)如图1,当B,A,E三点共线,且D在AC边上时,求线段FH,GH的长;
(2)如图2,当△ADE绕点A旋转时,求证:△GFH是等腰直角三角形,并直接写出△GFH面积的最大值.发布:2025/6/14 15:0:1组卷:139引用:2难度:0.3