对于平面直角坐标系xOy中的⊙C和点P,给出如下定义:如果在⊙C上存在一个动点Q,使得△PCQ是以CQ为底的等腰三角形,且满足底角∠PCQ≤60°,那么就称点P为⊙C的“关联点”.
(1)当⊙O的半径为2时,
①在点P1(-2,0),P2(1,-1),P3(0,3)中,⊙O的“关联点”是P1或P2P1或P2;
②如果点P在射线y=-33x(x≥0)上,且P是⊙O的“关联点”,求点P的横坐标m的取值范围.
(2)⊙C的圆心C在x轴上,半径为4,直线y=2x+2与两坐标轴交于A和B,如果线段AB上的点都是⊙C的“关联点”,直接写出圆心C的横坐标n的取值范围.
3
3
【考点】圆的综合题.
【答案】P1或P2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:280引用:3难度:0.1
相似题
-
1.如图1,直线l:y=-
x+b与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<34).以点A为圆心,AC长为半径作⊙A交x轴于另一点D,交线段AB于点E,连接OE并延长交⊙A于点F.165
(1)求直线l的函数表达式和tan∠BAO的值;
(2)如图2,连接CE,当CE=EF时,
①求证:△OCE∽△OEA;
②求点E的坐标;
(3)当点C在线段OA上运动时,求OE•EF的最大值.发布:2025/6/20 11:30:2组卷:5310引用:10难度:0.1 -
2.已知到直线l的距离等于a的所有点的集合是与直线l平行且距离为a的两条直线l1、l2(如图①).
(1)在图②的平面直角坐标系中,画出到直线y=x+2的距离为1的所有点的集合的图形.并写出该图形与y轴交点的坐标.2
(2)试探讨在以坐标原点O为圆心,r为半径的圆上,到直线y=x+2的距离为1的点的个数与r的关系.2
(3)如图③,若以坐标原点O为圆心,2为半径的圆上只有两个点到直线y=x+b的距离为1,则b的取值范围为 .发布:2025/6/21 6:0:2组卷:516引用:9难度:0.5 -
3.已知:△ABC内接于⊙O,AB=AC,过B作BE⊥AC于点E,交⊙O于F,连CF.
(1)如图1,求证:BE=FC+EE;
(2)如图2,过B作BH⊥AF垂足为H,交AC于点G,求证:BG=BC;
(3)如图3,在(2)的条件下,连接CH,若CH∥AB,CE=1,求AB的长.发布:2025/6/20 10:30:1组卷:14引用:1难度:0.2