已知:如图,四边形ABCD为矩形,AB=10,BC=3,点E是CD的中点,点P在AB上以每秒2个单位的速度由A向B运动,设运动时间为t秒.
(1)当点P在线段AB上运动了t秒时,BP=10-2t10-2t(用代数式表示);
(2)t为何值时,四边形PDEB是平行四边形;
(3)在直线AB上是否存在点Q,使以D、E、Q、P四点为顶点的四边形是菱形?若存在,求出t的值;若不存在,说明理由.

【考点】四边形综合题.
【答案】10-2t
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:253引用:6难度:0.2
相似题
-
1.在线上教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动一折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.
实践发现:
对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.
(1)①计算出∠MNE=°;
②继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图②,则∠GBN=°;
拓展延伸:
(2)如图③,折叠矩形纸片ABCD,使点A落在BC边上的点A'处,并且折痕交BC边于点T,交AD边于点S,把纸片展平,连接AA'交ST于点O,连接AT.求证:四边形SATA'是菱形;
解决问题:
(3)如图④,矩形纸片ABCD中,AB=10,AD=26,折叠纸片,使点A落在BC边上的点A'处,并且折痕交AB边于点T,交AD边于点S,把纸片展平.同学们小组讨论后,得出线段AT的长度有4,5,7,9.
请写出以上4个数值中你认为正确的数值 .发布:2025/6/7 2:30:1组卷:127引用:1难度:0.3 -
2.已知正方形ABCD的边长为4,△BEF为等边三角形,点E在AB边上,点F在AB边的左侧.
(1)如图1,若D,E,F在同一直线上,求BF的长;
(2)如图2,连接AF,CE,BD,并延长CE交AF于点H,若CH⊥AF,求证:AE+2FH=BD;2
(3)如图3,将△ABF沿AB翻折得到△ABP,点Q为AP的中点,连接CQ,若点E在射线BA上运动时,请直接写出线段CQ的最小值.发布:2025/6/7 2:0:5组卷:1043引用:10难度:0.2 -
3.探究问题.
(1)方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证:DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45°,
∴∠2+∠3=.
∵∠1=∠2,
∴∠1+∠3=45°,即∠GAF=∠EAF.
又AG=AE,AF=AF,
△GAE≌.
∴GF=EF,故DE+BF=EF.
(2)方法迁移:
如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.12
(3)问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足∠EAF=∠DAB,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).12发布:2025/6/7 1:0:2组卷:119引用:1难度:0.1