第24届冬季奥林匹克运动会,又称2022年北京冬季奥运会,是由中国举办的国际性奥林匹克赛事,于2022年2月4日开幕,2月20日闭幕,本届奥运会共设7个大项,15个分项,109个小项.北京赛区承办所有的冰上项目和自由式滑雪大跳台,延庆赛区承办雪车、雪橇及高山滑雪项目,张家口赛区承办除雪车、雪橇、高山滑雪和自由式滑雪大跳台之外的所有雪上项目,冬奥会的举办可以带动了我国3亿人次的冰雪产业,这为冰雪设备生产企业带来了新的发展机遇.某冰雪装备器材生产企业,生产某种产品的年固定成本为2000万元,每生产x千件,需另投入成本C(x)(万元).经计算若年产量x千件低于100千件,则这x千件产品成本C(x)=12x2+10x+1100;若年产是x千件不低于100千件时,则这x千件产品成本C(x)=120x+4500x-90-5400.每千件产品售价为100万元,为了简化运算我们假设该企业生产的产品能全部售完.
(1)写出年利润L(万元)关于年产量x(千件)的函数解析式;
(2)当年产量为多少千件时,企业所获得利润最大?最大利润是多少?
C
(
x
)
=
1
2
x
2
+
10
x
+
1100
C
(
x
)
=
120
x
+
4500
x
-
90
-
5400
【考点】根据实际问题选择函数类型.
【答案】(1)L=
;
(2)L的最大值为1000,此时年产量为105.
- 1 2 x 2 + 90 x - 3100 , 0 < x < 100 |
- 20 x - 4500 x - 90 + 3400 , x ≥ 100 |
(2)L的最大值为1000,此时年产量为105.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:90引用:5难度:0.5
相似题
-
1.随着科学技术的发展,放射性同位素技术已经广泛应用于医学、航天等众多领域,并取得了显著经济效益.假设某放射性同位素的衰变过程中,其含量P(单位:贝克)与时间t(单位:天)满足函数关系P(t)=
,其中P0为t=0时该放射性同位素的含量.已知t=15时,该放射性同位素的瞬时变化率为P02-t30,则该放射性同位素含量为4.5贝克时,衰变所需时间为( )-32ln210发布:2024/12/29 13:30:1组卷:156引用:11难度:0.7 -
2.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为福清人喜爱的交通工具.据预测,福清某新能源汽车4S店从2023年1月份起的前x个月,顾客对比亚迪汽车的总需量R(x)(单位:辆)与x的关系会近似地满足
(其中x∈N*且x≤6),该款汽车第x月的进货单价W(x)(单位:元)与x的近似关系是W(x)=150000+2000x.R(x)=12x(x+1)(39-2x)
(1)由前x个月的总需量R(x),求出第x月的需求量g(x)(单位:辆)与x的函数关系式;
(2)该款汽车每辆的售价为185000元,若不计其他费用,则这个汽车4S店在2023年的第几个月的月利润f(x)最大,最大月利润为多少元?发布:2024/12/29 11:30:2组卷:24引用:3难度:0.5 -
3.某工厂生产某种零件的固定成本为20000元,每生产一个零件要增加投入100元,已知总收入Q(单位:元)关于产量x(单位:个)满足函数:Q=
.400x-12x2,0≤x≤40080000,x>400
(1)将利润P(单位:元)表示为产量x的函数;(总收入=总成本+利润)
(2)当产量为何值时,零件的单位利润最大?最大单位利润是多少元?(单位利润=利润÷产量)发布:2024/12/29 13:0:1组卷:234引用:11难度:0.5