在复平面内,O是原点,OA,OB对应的复数分别为2+icos(2x+π3),(2+3sin2x)+i[2+cos(2x+π3)],i为虚数单位.设函数f(x)=OA•AB.
(1)求函数f(x)的单调递增区间;
(2)若函数y=f(x)-m在区间[0,π2]上有2个零点,求实数m的取值范围.
OA
,
OB
2
+
icos
(
2
x
+
π
3
)
(
2
+
3
sin
2
x
)
+
i
[
2
+
cos
(
2
x
+
π
3
)
]
f
(
x
)
=
OA
•
AB
[
0
,
π
2
]
【考点】平面向量数量积的性质及其运算.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:122引用:5难度:0.6