配方法是数学中非常重要的一种思想方法,它是指将一个式子或将一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和的方法,这种方法常被用到代数式的变形中,并结合非负数的意义来解决问题.
定义:若一个整数能表示成a2+b2(a,b为整数)的形式,则称这个数为“完美数”.
例如,5是“完美数”,理由:因为5=12+22,所以5是“完美数”.
解决问题:
(1)已知29是“完美数”,请将它写成a2+b2(a,b为整数)的形式;
(2)若x2-4x+5可配方成(x-m)2+n(m,n为常数),求mn的值;
(3)已知S=x2+4y2+4x-12y+k(x,y是整数,k是常数),要使S为“完美数”,试求出k值.
【考点】配方法的应用.
【答案】(1)29=52+22;(2)2;(3)当k=13时,S是完美数,
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/5 2:0:4组卷:995引用:15难度:0.6
相似题
-
1.(1)已知3m=6,3n=2,求32m+n-1的值;
(2)已知a2+b2+2a-4b+5=0,求(a-b)-3的值.发布:2025/6/7 10:30:1组卷:194引用:3难度:0.5 -
2.阅读下列材料:
利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.
例题:求x2-12x+37的最小值:
解:x2-12x+37=x2-2x•6+62-62+37=(x-6)2+1
因为不论x取何值,(x-6)2总是非负数,即(x-6)2≥0.
所以(x-6)2+1≥1.
所以当x=6时,x2-12x+37有最小值,最小值是1.
根据上述材料,解答下列问题:
(1)填空:x2-8x+=(x-)2;
(2)将x2+10x-2变形为(x+m)2+n的形式,并求出x2+10x-2的最小值;
(3)如图所示的第一个长方形边长分别是2a+5、3a+2,面积为S1;如图所示的第二个长方形边长分别是5a、a+5,面积为S2;试比较S1与S2的大小,并说明理由.发布:2025/6/7 8:30:2组卷:174引用:1难度:0.4 -
3.在学了乘法公式“(a±b)2=a2±2ab+b2”的应用后,王老师提出问题:求代数式x2+4x+5的最小值.要求同学们运用所学知识进行解答.
同学们经过探索、交流和讨论,最后总结出如下解答方法;
解:x2+4x+5=x2+4x+22-22+5=(x+2)2+1,
∵(x+2)2≥0,∴(x+2)2+1≥1.
当(x+2)2=0时,(x+2)2+1的值最小,最小值是1.
∴x2+4x+5的最小值是1.
请你根据上述方法,解答下列各题:
(1)直接写出(x-1)2+3的最小值为 .
(2)求代数式x2+10x+32的最小值.
(3)你认为代数式-+2x+5有最大值还是有最小值?求出该最大值或最小值.13x2
(4)若7x-x2+y-11=0,求x+y的最小值.发布:2025/6/7 11:0:1组卷:1135引用:4难度:0.5