已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:
(1)当t为何值时,点E在∠BAC的平分线上?
(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;
(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;
(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.
【考点】四边形综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:2798引用:5难度:0.2
相似题
-
1.将纸片△ABC沿DE折叠使点A落在点A'处.
【感知】如图①,点A落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是 ;
【探究】如图②,若点A落在四边形BCDE的内部,则∠A与∠1+∠2之间的数量关系是 ;
【拓展】如图③,点A落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为 .发布:2025/6/17 4:30:1组卷:309引用:4难度:0.4 -
2.如图1,在Rt△ABC中,∠ACB=90°,∠CAB=30°,点D在边AB上以CD为底边作等腰直角△CDP(点P,A在直线CD的两侧),射线CP交直线AB于点E.
(1)若点D是AB的中点,且BC=2,求DP的长;
(2)当△CDE是等腰三角形时,求∠BCE的度数;
(3)如图2,设AP=a,求四边形ADPC面积的最小值.(用含a的式子表示)发布:2025/6/17 4:30:1组卷:26引用:1难度:0.4 -
3.如图,在菱形ABCD中,对角线AC,BD交于点O.
(1)若AB=5,AC=8,则菱形ABCD的面积是 ;
(2)点F在BC上,AF交BD于点E,若BE=BF,求证:CF=2OE;
(3)点P在射线AC上,且∠PDO=,若AC=16,AD=10,则DP的长为 .12∠PCD发布:2025/6/17 4:30:1组卷:164引用:2难度:0.1
相关试卷