材料一:对于个位数字不为零的任意三位数M,将其个位数字与百位数字对调得到M',则称M'为M的“倒序数”,将一个数与它的“倒序数”的差的绝对值与99的商记为F(M).
例如523为325的“倒序数”,F(325)=|325-523|99=2;
材料二:对于任意三位数abc满足,c>a且a+c=2b,则称这个数为“登高数”.
(1)F(935)=44;F(147)=66;
(2)任意三位数M=abc,求F(M)的值;
(3)已知S、T均为“登高数”,且2F(S)+3F(T)=24,求S+T的最大值.
|
325
-
523
|
99
abc
abc
【考点】因式分解的应用.
【答案】4;6
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:610引用:2难度:0.2
相似题
-
1.若实数x满足x2-x-1=0,则代数式x3-2x2+2023的值为 .
发布:2025/6/9 3:30:1组卷:527引用:6难度:0.6 -
2.如果一个自然数M能分解成a×A,其中a为一位数,A为两位数,且a与A的十位数字的和等于A的个位数字,则称数M为“和数”,将“和数”分解成M=a×A的过程,称为“和分解”,若a与A的十位数字的差等于A的个位数字,则称数M为“差数”,将“差数”分解成M=a×A的过程,称为“差分解”.
例如:∵245=5×49,5+4=9,∴245为“和数”,
∵205=5×41,5-4=1,∴205为“差数”.
又如∵195=3×65=5×39,3+6≠5,5+3≠9,且3-6≠5,5-3≠9,∴195既不是“和数”也不是“差数”.
(1)判断236是“和数”吗?115是“差数”吗?并说明理由;
(2)将一个“和数”M进行“和分解”,即,(1≤m≤8,1≤a≤8,2≤b≤9,m,a,b都为整数),将一个“差数”N进行“差分解”,即M=m×ab,(2≤n≤9,1≤a≤8,1≤c≤8,n,a,c都为整数),记P(M)=m+a+b,P(N)=n+a+c,若N=n×ac能被3整除,求出所有满足题意的M的值.P(M)P(N)发布:2025/6/9 1:30:1组卷:86引用:2难度:0.4 -
3.若一个四位数M的百位数字与千位数字的差恰好是个位数字与十位数字的差的2倍,则将这个四位数M称作“星耀重外数”.
例如:M=2456,∵4-2=2×(6-5),∴2456是“星耀重外数”;又如M=4325,∵3-4≠2×(5-2),∴4325不是“星耀重外数”.
(1)判断2023,5522是否是“星耀重外数”,并说明理由;
(2)一个“星耀重外数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,且满足2≤a≤b<c≤d≤9,记,当G(M)是整数时,求出所有满足条件的M.G(M)=49ac-2a+2d+23b-624发布:2025/6/9 16:0:2组卷:154引用:1难度:0.4