施工队要修建一个横断面为抛物线的公路隧道,其高度为8米,宽度OM为16米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).
(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;
(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽3.5米、高5.8米的特种车辆?请通过计算说明;
(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A.D点在抛物线上.B、C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.

【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:1732引用:6难度:0.4
相似题
-
1.如图①,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度OH=1.5米.如图②,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=2米,竖直高度EF=1米.下边缘抛物线可以看作由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2米,高出喷水口0.5米,灌溉车到l的距离OD为d米.
(1)求上边缘抛物线的函数表达式,并求喷出水的最大射程OC;
(2)求下边缘抛物线与x轴的正半轴交点B的坐标;
(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带(即矩形DEFC位于上边缘抛物线和下边缘抛物线所夹区域内),求d的取值范围.发布:2025/5/23 1:0:1组卷:1246引用:8难度:0.3 -
2.某服装店销售某种衣服,其成本为每件60元,当售价为每件100元时,每月可销售120件.由于疫情的影响,库存积压严重,为了减少库存,该服装店采取降价措施.据市场调查反映:销售单价每降5元,则每月可多销售20件.设每件的售价为x元(x为正整数),每月的销售量为y件.
(1)直接写出y与x的函数关系式;
(2)当销售单件降低多少元时,每月获得的利润最大,最大利润是多少?发布:2025/5/23 1:30:2组卷:27引用:1难度:0.5 -
3.某园艺公司计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1(万元)与投入资金x(万元)成正比例关系,如图1所示;种植花卉的利润y2(万元)与投入资金x(万元)成二次函数关系,如图2所示.
(1)分别求出利润y1(万元)与y2(万元)关于投入资金x(万元)的函数关系式;
(2)如果该园艺公司以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?发布:2025/5/23 1:30:2组卷:149引用:5难度:0.7
相关试卷