小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD绕点A顺时针旋转α(0°<α≤90°),得到矩形AB′C′D′,连结BD.
[探究1]如图1,当α=90°时,点C′恰好在DB延长线上.若AB=1,求BC的长.
[探究2]如图2,连结AC′,过点D′作D′M∥AC′交BD于点M.线段D′M与DM相等吗?请说明理由.
[探究3]在探究2的条件下,射线DB分别交AD′,AC′于点P,N(如图3),发现线段DN,MN,PN存在一定的数量关系,请写出这个关系式,并加以证明.

【考点】四边形综合题.
【答案】[探究1]BC=.
[探究2]D'M=DM.证明过程见解析;
[探究3]关系式为MN2=PN•DN.证明过程见解析.
1
+
5
2
[探究2]D'M=DM.证明过程见解析;
[探究3]关系式为MN2=PN•DN.证明过程见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/12 3:0:1组卷:3152引用:10难度:0.3
相似题
-
1.已知:在平行四边形ABCD中,∠BAD=45°,AB=BD,E为BC上一点,连接AE交BD于F.
(1)如图1,若点E与点C重合,且AD=4,求EF的长;
(2)如图2,当点E在BC边上时,过点D作DG⊥AE于G,延长DG交BC于H,连接FH.求证:AF=DH+FH;
(3)如图3,在(2)的条件下,连接AH交BF于M,当M为BF的中点时,请直接写出AF与FH的数量关系.发布:2025/6/13 3:30:1组卷:136引用:1难度:0.1 -
2.如图,一个三角形的纸片ABC,其中∠A=∠C,
(1)把△ABC纸片按(如图1)所示折叠,使点A落在BC边上的点F处,DE是折痕.说明BC∥DF;
(2)把△ABC纸片沿DE折叠,当点A落在四边形BCED内时(如图2),探索∠C与∠1+∠2之间的大小关系,并说明理由;
(3)当点A落在四边形BCED外时(如图3),探索∠C与∠1、∠2之间的大小关系.(直接写出结论)发布:2025/6/13 6:30:2组卷:37引用:2难度:0.1 -
3.已知四边形ABCD是正方形,点F为射线AD上一点,连接CF并以CF为对角线作正方形CEFG,连接BE,DG.
(1)如图1,当点F在线段AD上时,求证:BE=DG;
(2)如图1,当点F在线段AD上时,求证:CD-DF=BE;2
(3)如图2,当点F在线段AD的延长线上时,请直接写出线段CD,DF与BE间满足的关系式.发布:2025/6/13 7:0:2组卷:429引用:3难度:0.2