试卷征集
加入会员
操作视频

抛物线y=ax2+bx+c(a≠0)经过点A(2,0)和点B(-3,5).
(1)求a与b的关系式.
(2)若抛物线的对称轴是y轴.
①点C,D均在抛物线上,C点与A点关于y轴对称,且点D在第一象限,满足∠ABD=2∠BAC,求点D的坐标;
②直线y=kx-2(k≠0)与抛物线交于M,N两点(点M在点N的左侧),点P是直线MN下方的抛物线上的一点,点Q在y轴上,且四边形MPNQ是平行四边形,求点Q的坐标.

【考点】二次函数综合题
【答案】(1)a-b=1;
(2)①D(4,12);
②Q(0,0).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:78引用:1难度:0.1
相似题
  • 1.在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点H.
    (1)直接填写:a=
    ,b=
    ,顶点C的坐标为

    (2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由.

    发布:2025/6/17 23:30:2组卷:163引用:1难度:0.4
  • 2.如图,抛物线y=
    1
    4
    (x+2)(x-8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是(  )

    发布:2025/6/17 18:30:1组卷:2558引用:19难度:0.7
  • 3.如图,抛物线y=ax2-3ax+b与直线AB交于A(-2,
    3
    2
    )、B(4,0)两点,点C是此抛物线上的一个动点,过点C作CD⊥x轴,交直线AB于点D.
    (1)求此抛物线的解析式;
    (2)如图①,当点C在直线AB下方的抛物线上运动时,请求出线段CD长度的最大值;
    (3)如图②,以D为圆心,CD的长为半径作⊙D.当⊙D与x轴相切时,请直接写出点C的横坐标.

    发布:2025/6/17 22:30:1组卷:63引用:1难度:0.2
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正