如图1,直线AB与直线l1,l2分别交于C,D两点,点M在直线l2上,射线DE平分∠ADM交直线l1于点Q,∠ACQ=2∠CDQ.
(1)证明:l1∥l2;
(2)如图2,点P是CD上一点,射线QP交直线l2于点F,∠ACQ=70°.
①若∠QFD=20°,则直接写出∠FQD的度数是 15°15°;
②点N在射线DE上,满足∠QCN=∠QFD,连接CN,请补全图形,探究∠CND与∠FQD满足的等量关系,并证明.

【考点】平行线的判定与性质.
【答案】15°
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/11/8 21:30:1组卷:2136引用:8难度:0.5
相似题
-
1.如图,AB∥CD∥FH∥GM,且∠EFH=∠GMN.
(1)求证:EG∥HN;
(2)若∠AEG=75°,求∠HNC.发布:2025/6/13 17:0:1组卷:159引用:1难度:0.7 -
2.如图,CD是△ABC的高,点E、F、G分别在BC、AB、AC上,且EF⊥AB,DG∥BC.试判断∠1、∠2的数量关系,并说明理由.
发布:2025/6/13 13:0:4组卷:390引用:5难度:0.5 -
3.完成下列推理过程:如图,已知∠A=∠EDF,∠C=∠F,求证:BC∥EF.
证明:∵∠A=∠EDF(已知),
∴∥( ),
∴∠C=( ).
又∵∠C=∠F(已知),
∴=∠F(等量代换),
∴∥( ).发布:2025/6/13 18:30:2组卷:234引用:3难度:0.6