如图①,平面直角坐标系中,直线y=kx+b与x轴交于点A(-10,0),与y轴交于点B,与直线y=-73x交于点C(a,7).
(1)求点C的坐标及直线AB的表达式;
(2)如图②,在(1)的条件下,过点E作直线l⊥x轴,交直线y=-73x于点F,交直线y=kx+b于点G,若点E的坐标是(-15,0).
①求△CGF的面积;
②点M为y轴上OB的中点,直线l上是否存在点P,使PM-PC的值最大?若存在,直接写出这个最大值;若不存在,说明理由;
(3)若(2)中的点E是x轴上的一个动点,点E的横坐标为m(m<0),点E在x轴上运动,当m取何值时,直线l上存在点Q,使得以A,C,Q为顶点的三角形与△AOC全等?请直接写出相应的m的值.

7
3
7
3
【考点】一次函数综合题.
【答案】(1)点C(-3,7),直线AB解析式:y=x+10;
(2)①S△CGF=240;②存在,最大值为;
(3)当m取-3或-10或-13时,直线l上存在点Q,使得以A,C,Q为顶点的三角形与△AOC全等.
(2)①S△CGF=240;②存在,最大值为
13
(3)当m取-3或-10或-13时,直线l上存在点Q,使得以A,C,Q为顶点的三角形与△AOC全等.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:865引用:2难度:0.6
相似题
-
1.在平面直角坐标系中,直线y=kx+8k(k是常数,k≠0)与坐标轴分别交于点A,点B,且点B的坐标为(0,6).
(1)求点A的坐标;
(2)如图1,将直线AB绕点B逆时针旋转45°交x轴于点C,求直线BC的解析式;
(3)在(2)的条件下,直线BC上有一点M,坐标平面内有一点P,若以A、B、M、P为顶点的四边形是菱形,请直接写出点P的坐标.发布:2025/6/9 20:30:1组卷:769引用:2难度:0.3 -
2.已知:如图1,在平面直角坐标系中,一次函数y=
x+3交x轴于点A,交y轴于点B,点C是点A关于y轴对称的点,过点C作y轴平行的射线CD,交直线AB与点D,点P是射线CD上的一个动点.34
(1)求点A,B的坐标.
(2)如图2,将△ACP沿着AP翻折,当点C的对应点C′落在直线AB上时,求点P的坐标.
(3)若直线OP与直线AD有交点,不妨设交点为Q(不与点D重合),连接CQ,是否存在点P,使得S△CPQ=2S△DPQ,若存在,请求出对应的点Q坐标;若不存在,请说明理由.发布:2025/6/9 21:0:1组卷:5624引用:9难度:0.1 -
3.如图,点M(-3,4),点P从O点出发,沿射线OM方向1个单位/秒匀速运动,运动的过程中以P为对称中心,O为一个顶点作正方形OABC,当正方形面积为128时,点A坐标是( )
发布:2025/6/9 22:0:2组卷:3720引用:9难度:0.3