综合与实践:折纸中的数学
问题背景
在数学活动课上,老师首先将平行四边形纸片ABCD按如图①所示方式折叠,使点C与点A重合,点D落到D′处,折痕为EF.这时同学们很快证得:△AEF是等腰三角形.接下来各学习小组也动手操作起来,请你解决他们提出的问题.
操作发现
(1)“争先”小组将矩形纸片ABCD按上述方式折叠,如图②,发现重叠部分△AEF恰好是等边三角形,求矩形ABCD的长、宽之比是多少?
实践探究
(2)“励志”小组将矩形纸片ABCD沿EF折叠,如图③,使B点落在AD边上的B′处;沿B′G折叠,使D点落在D′处,且B′D′过F点.试探究四边形EFGB′是什么特殊四边形?
(3)再探究:在图③中连接BB′,试判断并证明△BB′G的形状.

【考点】四边形综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:741引用:3难度:0.3
相似题
-
1.如图,在正方形ABCD中,点G为BC边上的动点,点H为CD边上的动点,且满足BG+DH=HG,连接AH,AG分别交正方形ABCD的对角线BD于F,E两点,则下列结论中正确的有 .(填序号即可)
①∠DHA=∠GHA;②AF•AH=AE•AG;③BE+DF=EF;④AH=AE2发布:2025/5/24 5:30:2组卷:250引用:1难度:0.3 -
2.如图1,在矩形ABCD中,AB=3,AD=4.P为对角线BD上的点,过点P作PM⊥AD于点M,PN⊥BD交BC于点N,Q是M关于PD的对称点,连结PQ,QN.
(1)如图2,当Q落在BC上时,求证:BQ=MD.
(2)是否存在△PNQ为等腰三角形的情况?若存在,求MP的长;若不存在,请说明理由.
(3)若射线MQ交射线DC于点F,当PQ⊥QN时,求DF:FC的值.发布:2025/5/24 6:0:2组卷:366引用:3难度:0.1 -
3.四边形ABCD为正方形,AB=8,点E为直线BC上一点,射线AE交对角线BD于点F,交直线CD于点G.
(1)如图,点E在BC延长线上.求证:△CFG∽△EFC;
(2)是否存在点E,使得△CFG是等腰三角形?若存在,求BE的长;若不存在,请说明理由.发布:2025/5/24 7:0:1组卷:57引用:1难度:0.1