如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.
(1)求证:∠A+∠C=∠B+∠D.
利用以上结论解决下列问题:
(2)如图2所示,∠1=130°,则∠A+∠B+∠C+∠D+∠E+∠F的度数为260°260°.
(3)如图3,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD,AB分别相交于点M,N.
①若∠B=100°,∠C=120°,求∠P的度数.
②若角平分线中角的关系改成“∠CAP=14∠CAB,∠CDP=14∠CDB”,试直接写出∠P与∠B,∠C之间存在的数量关系,并证明理由.

1
4
1
4
【答案】260°
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:1761引用:4难度:0.6