如图,正方形ABCD的边长是2,以正方形ABCD的边AB为边,在正方形内作等边三角形ABE,P为对角线AC上的一点,则PD+PE的最小值为22.
【考点】轴对称-最短路线问题;正方形的性质.
【答案】2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/18 21:0:1组卷:396引用:40难度:0.7
相似题
-
1.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=.
发布:2025/6/18 21:0:1组卷:2780引用:91难度:0.5 -
2.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上.
(1)求出AB的长.
(2)求出△ABC的周长的最小值?发布:2025/6/19 0:30:1组卷:1081引用:2难度:0.3 -
3.如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是
发布:2025/6/18 21:0:1组卷:2636引用:69难度:0.7