试卷征集
加入会员
操作视频

为了了解中学生是否有运动习惯,我校从高一新生中随机抽取了100人,其中男生40人,女生60人,调查结果显示,男生中只有20%表示自己不喜欢运动,女生中有32人不喜欢运动,为了了解喜欢运动与否是否与性别有关,构建了2×2列联表:
不喜欢运动 喜欢运动 总计
男生
女生
总计
(1)请将2×2列联表补充完整,并判断能否有99%的把握认为“喜欢运动”与性别有关.
(2)从男生中按“是否喜欢运动”为标准采取分层抽样方式抽出10人,再从这10人中随机抽出2人,若所选2人中“不喜欢运动”人数为x,求x分布列及期望.
附:
k
2
=
n
ad
-
bc
2
a
+
b
c
+
d
a
+
c
b
+
d
n
=
a
+
b
+
c
+
d

P(k2≥k0 0.025 0.01 0.001
k0 5.024 6.635 10.8

【答案】(1)有99%把握认为“喜欢运动”与性别有关;
(2)X的分布列为:
X 0 1 2
P
28
45
16
45
1
45
E(X)=
2
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/30 8:0:9组卷:27引用:2难度:0.6
相似题
  • 1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
    (Ⅰ)求获得复赛资格的人数;
    (Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
    (Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).

    发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5
  • 2.设离散型随机变量X的分布列如表:
    X 1 2 3 4 5
    P m 0.1 0.2 n 0.3
    若离散型随机变量Y=-3X+1,且E(X)=3,则(  )

    发布:2024/12/29 13:0:1组卷:195引用:6难度:0.5
  • 3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为(  )

    发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正