为了了解中学生是否有运动习惯,我校从高一新生中随机抽取了100人,其中男生40人,女生60人,调查结果显示,男生中只有20%表示自己不喜欢运动,女生中有32人不喜欢运动,为了了解喜欢运动与否是否与性别有关,构建了2×2列联表:
不喜欢运动 | 喜欢运动 | 总计 | |
男生 | |||
女生 | |||
总计 |
(2)从男生中按“是否喜欢运动”为标准采取分层抽样方式抽出10人,再从这10人中随机抽出2人,若所选2人中“不喜欢运动”人数为x,求x分布列及期望.
附:
k
2
=
n
(
ad
-
bc
)
2
(
a
+
b
)
(
c
+
d
)
(
a
+
c
)
(
b
+
d
)
,
n
=
a
+
b
+
c
+
d
P(k2≥k0) | 0.025 | 0.01 | 0.001 |
k0 | 5.024 | 6.635 | 10.8 |
【考点】离散型随机变量的均值(数学期望);独立性检验.
【答案】(1)有99%把握认为“喜欢运动”与性别有关;
(2)X的分布列为:
E(X)=.
(2)X的分布列为:
X | 0 | 1 | 2 |
P | 28 45 |
16 45 |
1 45 |
2
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/30 8:0:9组卷:27引用:2难度:0.6
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:195引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7