抛物线y=ax2+bx-3过点A(-1,0),点B(3,0),与y轴交于C点.
(1)求抛物线的表达式及点C的坐标;
(2)如图1,设M是抛物线上的一点,若∠MAB=45°,求M点的坐标;
(3)如图2,点P在直线BC下方的抛物线上,过点P作PD⊥x轴于点D,交直线BC于点E,过P点作PF⊥BC,交BC于F点,△PEF的周长是否有最大值,若有最大值,求出此时P点的坐标;若不存在,说明理由.

【考点】二次函数综合题.
【答案】(1)y=x2-2x-3,C(0,-3);
(2)M点的坐标为(4,5)或(2,-3);
(3)△PEF的周长有最大值,此时P点的坐标为(,-).
(2)M点的坐标为(4,5)或(2,-3);
(3)△PEF的周长有最大值,此时P点的坐标为(
3
2
15
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/25 1:30:1组卷:619引用:2难度:0.3
相似题
-
1.如图,二次函数y=-x2+2x+m+1的图象交x轴于点A(a,0)和B(b,0),交y轴于点C,图象的顶点为D.下列四个命题:
①当x>0时,y>0;
②若a=-1,则b=4;
③点C关于图象对称轴的对称点为E,点M为x轴上的一个动点,当m=2时,△MCE周长的最小值为2;10
④图象上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2,
其中真命题的个数有( )发布:2025/5/25 6:30:1组卷:1200引用:3难度:0.7 -
2.如图所示,抛物线y=x2-4x+3与x轴分别交于A、B两点,交y轴于点C,
(1)求cos∠CAO的值;
(2)求直线AC的函数关系式;
(3)如果有动点P是y轴上,且△OPA与△OAC相似,求P点坐标.发布:2025/5/25 6:30:1组卷:64引用:2难度:0.3 -
3.如图,抛物线y=ax2+bx+c经过点A(-2,0),B(4,0),与y轴正半轴交于点C,且OC=2OA,抛物线的顶点为D,对称轴交x轴于点E.直线y=mx+n经过B,C两点.
(1)求抛物线及直线BC的函数表达式;
(2)点F是抛物线对称轴上一点,当FA+FC的值最小时,求出点F的坐标及FA+FC的最小值;
(3)连接AC,若点P是抛物线上对称轴右侧一点,点Q是直线BC上一点,试探究是否存在以点E为直角顶点的Rt△PEQ,且满足tan∠EQP=tan∠OCA.若存在,求出点P的坐标;若不存在,请说明理由.发布:2025/5/25 6:30:1组卷:4281引用:12难度:0.3