定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数y=12x+12的图象的“等值点”.
(1)分别判断函数y=x+2,y=x2-x的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;
(2)设函数y=3x(x>0),y=-x+b的图象的“等值点”分别为点A,B,过点B作BC⊥x轴,垂足为C.当△ABC的面积为3时,求b的值;
(3)若函数y=x2-2(x≥m)的图象记为W1,将其沿直线x=m翻折后的图象记为W2.当W1,W2两部分组成的图象上恰有2个“等值点”时,直接写出m的取值范围.
1
2
1
2
3
x
【考点】二次函数综合题.
【答案】(1)函数y=x+2的图象上不存在“等值点”,函数y=x2-x的图象上有两个“等值点”(0,0)或(2,2);
(2)b的值为-2或4;
(3)m<-或-1<m<2.
(2)b的值为-2
3
3
(3)m<-
9
8
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:4677引用:5难度:0.4
相似题
-
1.已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴的正半轴交于点E,已知点B(-1,0).
(1)点A的坐标:,点E的坐标:;
(2)若二次函数y=-x2+bx+c过点A、E,求此二次函数的解析式;637
(3)P是AC上的一个动点(P与点A、C不重合)连接PB、PD,设l是△PBD的周长,当l取最小值时,求点P的坐标及l的最小值并判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由.发布:2025/5/24 7:0:1组卷:236引用:3难度:0.3 -
2.如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A,B两点,与y轴交于点C,点A的坐标是(3,0),抛物线的对称轴是直线x=1.
(1)求抛物线的函数表达式;
(2)连接BC,AC,若点P为第四象限内抛物线上一点,且∠PCA=∠BCO,求点P的坐标;
(3)过点C作x轴的平行线交抛物线于点D过D点作DE⊥x轴于点E得到矩形OCDE,将△OBC沿x轴向右平移,当B点与E重合时结束,设平移距离为t,△OBC与矩形OCDE重叠面积为S,请直接写出S与t的函数关系.发布:2025/5/24 7:0:1组卷:237引用:1难度:0.4 -
3.如图,已知抛物线y=ax2+bx+c与x轴交于A、B(3,0)两点,与y轴交于点C,顶点为D(2,-1),直线l是抛物线的对称轴.
(1)求抛物线的函数表达式;
(2)点M是直线l上的动点,当以点M、B、D为顶点的三角形与△ABC相似时,求点M的坐标.发布:2025/5/24 7:0:1组卷:470引用:3难度:0.3
相关试卷