通过对下面数学模型的研究学习,解决下列问题:
【模型呈现】
(1)如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进而得到AC=DEDE,BC=AEAE.我们把这个数学模型称为“K字”模型或“一线三等角”模型;

【模型应用】
(2)①如图2,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;
②如图3,在平面直角坐标系xOy中,点A的坐标为(2,4),点B为平面内任一点.若△AOB是以OA为斜边的等腰直角三角形,请直接写出点B的坐标.
【考点】三角形综合题.
【答案】DE;AE
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:3287引用:10难度:0.3
相似题
-
1.综合与实践:
问题情境:数学活动课上,王老师出示了一个问题:
如图1,直线m∥n,点A、B在直线m上(点B在点A的下方),过点A作AC⊥n于点C,连接BC,以C为圆心CA为半径作弧,交直线n于点D,交BC于点E.求证:∠ABC=2∠CDE.
独立思考:(1)请解答王老师提出的问题.
实践探究:(2)DE与AC交于点P,在原有问题条件不变的情况下,王老师提出新问题,请你解答.
“猜想出AB、BC、PC的数量关系,并证明.”
问题解决:(3)过点D作DQ∥BC交m于点Q(点Q在点A上方),数学活动小组同学对上述问题进行特殊化研究之后发现,当AQ=BE时,线段BE和AB有一定的数量关系,该小组提出下面的问题,请你解答.
“如图2,当AQ=BE时,求的值.”DPAB发布:2025/6/14 20:0:1组卷:171引用:2难度:0.1 -
2.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.
(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由.
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为 cm/s时,在某一时刻也能够使△BPD与△CPQ全等.
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都按逆时针方向沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?发布:2025/6/14 20:0:1组卷:112引用:2难度:0.3 -
3.如图1,在△ABC中,∠A=40°,外角平分线BN和CN相交于点N,求∠BNC的度数.
(1)请你先完成这个问题的解答.小明在完成以上问题的解答后,作如下变式探究:
(2)如图2,在△ABC中,∠A=80°,若∠CBN=∠CBE,∠BCM=38∠BCD,BN与CM交于点O,求∠BOC的度数.38
(3)如图3,在△ABC中,∠A=n°,若∠CBN=∠CBE,∠BCM=34∠BCD,当射线CM与BN相交时,n的取值范围是什么?试说明理由.34发布:2025/6/14 20:0:1组卷:257引用:2难度:0.4