在正方形ABCD中,点E是对角线AC上的动点(与点A,C不重合),连接BE.

(1)将射线BE绕点B顺时针旋转45°,交直线AC于点F.
①依题意补全图1;
②小深通过观察、实验,发现线段AE,FC,EF存在以下数量关系:
AE与FC的平方和等于EF的平方.小深把这个猜想与同学们进行交流,通过讨论,形成证明该猜想的几种想法:
想法1:将线段BF绕点B逆时针旋转90°,得到线段BM,要证AE,FC,EF的关系,只需证AE,AM,EM的关系.
想法2:将△ABE沿BE翻折,得到△NBE,要证AE,FC,EF的关系,只需证EN,FN,EF的关系.
…
请你参考上面的想法,用等式表示线段AE,FC,EF的数量关系并证明;(一种方法即可)
(2)如图2,若将直线BE绕点B顺时针旋转135°,交直线AC于点F.若正方形边长为2,AE:EC=2:3,求AF的长.
【考点】四边形综合题.
【答案】(1)①作图见解析部分;
②AE2+FC2=EF2;理由见解析部分;
(2).
②AE2+FC2=EF2;理由见解析部分;
(2)
2
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:535引用:2难度:0.1
相似题
-
1.[证明体验]
(1)如图1,在△ABC中,点D在边BC上,点F在边AC上,AB=AD,FB=FC,AD与BF相交于点E.求证:∠ABF=∠CAD.
[思考探究]
(2)如图2,在(1)的条件下,过点D作AB的平行线交AC于点G,若DE=2AE,AB=6,求DG的长.
[拓展延伸]
(3)如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,∠ABC=∠ACB=67.5°,OD=2OB,OA=,求CD的长.2发布:2025/5/23 23:30:1组卷:687引用:3难度:0.3 -
2.如图,在矩形ABCD中,AD=
AB,∠BAD的平分线交BC于点E.DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①AD=AE;②∠AED=∠CED;③OE=OD;④BH=HF;⑤BC-CF=2HE,其中正确的有( )2发布:2025/5/23 22:30:2组卷:1273引用:4难度:0.2 -
3.【问题提出】
(1)如图①,OP为∠AOB的平分线,PC⊥OA于点C,PD⊥OB于点D,若S△OPC=3,则S△OPD=
【问题探究】
(2)如图②,a、b是两条平行的直线,且a、b之间的距离为12,点A为直线a上一点,点B、C为直线b上两点,且点B在点C的左侧,若∠BAC=45°,求BC的最小值;
【问题解决】
(3)如图③,四边形ABCD是园林规划局欲修建的一块平行四边形园林的大致示意图,沿对角线BD修一条人行走道,沿∠BAD的平分线AP(点P在BD上)修一条园林灌溉水渠.根据规划要求,∠ABC=120°,AP=120米,且使得平行四边形ABCD的面积尽可能小,问平行四边形ABCD的面积是否存在最小值?若存在,求出其最小值,若不存在,请说明理由.发布:2025/5/23 22:30:2组卷:137引用:1难度:0.2