对于一个有穷单调递增正整数数列P,设其各项为a1,a2,…,an(n≥5),若数列P中存在不同的四项ap,aq,as,at满足ap+aq=as+at,则称P为等和数列,集合M={ap,aq,as,at}称为P的一个等和子集,否则称P为不等和数列.
(1)判断下列数列是否是等和数列,若是等和数列,直接写出它的所有等和子集;
A:1,3,5,7,9;B:2,4,6,7,10;
(2)已知数列P:a1,a2,a3,a4,a5是等和数列,并且对于任意的i,j(1≤i<j≤5),总存在P的一个等和子集M满足集合{ai,aj}⊆M,求证:数列P是等差数列;
(3)若数列P:a1,a2,…,an是不等和数列,求证:an>n2-n+94.
n
2
-
n
+
9
4
【考点】数列的应用.
【答案】(1)数列A是等和数列,其所有的等和子集为:{1,3,5,7},{1,3,7,9},{3,5,7,9};数列B不是等和数列;
(2)证明见解答;
(3)证明见解答.
(2)证明见解答;
(3)证明见解答.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:303引用:3难度:0.1
相似题
-
1.对于数列{an},把a1作为新数列{bn}的第一项,把ai或-ai(i=2,3,4,…,n)作为新数列{bn}的第i项,数列{bn}称为数列{an}的一个生成数列.例如,数列1,2,3,4,5的一个生成数列是1,-2,-3,4,5.已知数列{bn}为数列{
}(n∈N*)的生成数列,Sn为数列{bn}的前n项和.12n
(Ⅰ)写出S3的所有可能值;
(Ⅱ)若生成数列{bn}满足S3n=(1-17),求数列{bn}的通项公式;18n
(Ⅲ)证明:对于给定的n∈N*,Sn的所有可能值组成的集合为{x|x=,k∈N*,k≤2n-1}.2k-12n发布:2024/12/28 23:30:2组卷:121引用:6难度:0.1 -
2.已知{an},{bn}为两非零有理数列(即对任意的i∈N*,ai,bi均为有理数),{dn}为一无理数列(即对任意的i∈N*,di为无理数).
(1)已知bn=-2an,并且(an+bndn-andn2)(1+dn2)=0对任意的n∈N*恒成立,试求{dn}的通项公式.
(2)若{dn3}为有理数列,试证明:对任意的n∈N*,(an+bndn-andn2)(1+dn2)=1恒成立的充要条件为.an=11+dn6bn=dn31+dn6
(3)已知sin2θ=(0<θ<2425),dn=π2,试计算bn.3tan(n•π2+(-1)nθ)发布:2024/12/22 8:0:1组卷:193引用:3难度:0.1 -
3.2023年是我国规划的收官之年,2022年11月23日全国22个省份的832个国家级贫困县全部脱贫摘帽.利用电商平台,开启数字化科技优势,带动消费扶贫起到了重要作用.阿里研究院数据显示,2013年全国淘宝村仅为20个,通过各地政府精准扶贫,与电商平台不断合作创新,2014年、2015年、2016年全国淘宝村分别为212个、779个、1311个,从2017年起比上一年约增加1000个淘宝村,请你估计收官之年全国淘宝村的数量可能为( )
发布:2024/12/18 13:30:2组卷:93引用:1难度:0.9