甲、乙两名围棋学员进行围棋比赛,规定每局比赛胜者得1分,负者得0分,平局双方均得0分,比赛一直进行到一方比另一方多两分为止,多得两分的一方赢得比赛.已知每局比赛中,甲获胜的概率为α,乙获胜的概率为β,两人平局的概率为γ(α+β+γ=1,α>0,β>0,γ≥0),且每局比赛结果相互独立.
(1)若α=25,β=25,γ=15,求进行4局比赛后甲学员赢得比赛的概率;
(2)当γ=0时,
(i)若比赛最多进行5局,求比赛结束时比赛局数X的分布列及期望E(X)的最大值;
(ii)若比赛不限制局数,写出“甲学员赢得比赛”的概率(用α,β表示),无需写出过程.
α
=
2
5
β
=
2
5
γ
=
1
5
【答案】(1);
(2)(i)分布列见解析,期望最大值为;(ii).
44
625
(2)(i)分布列见解析,期望最大值为
13
4
α
2
α
2
+
β
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/20 8:0:8组卷:420引用:7难度:0.4
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:197引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7