试卷征集
加入会员
操作视频

问题情境
在综合实践课上,老师组织七年级(2)班的同学开展了探究两角之间数量关系的数学活动,如图,已知射线AM∥BN,连接AB,点P是射线AM上的一个动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
探索发现
“快乐小组”经过探索后发现:
(1)当∠A=60°时,求证:∠CBD=∠A.
(2)不断改变∠A的度数,∠CBD与∠A却始终存在某种数量关系,
当∠A=40°,则∠CBD=
70
70
度,
当∠A=x°时,则∠CBD=
(90-
x
2
(90-
x
2
度,(用含x的代数式表示)
操作探究
(3)“智慧小组”利用量角器量出∠APB和∠ADB的度数后,探究二者之间的数量关系.他们惊奇地发现,当点P在射线AM上运动时,无论点P在AM上的什么位置,∠APB与∠ADB之间的数量关系都保持不变,请写出它们的关系,并说明理由.

【答案】70;(90-
x
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/18 8:0:9组卷:477引用:6难度:0.5
相似题
  • 1.一副三角板按如图所示放置,AB∥DC,则∠CAE的度数为

    发布:2025/5/25 12:0:2组卷:3017引用:25难度:0.7
  • 2.如图,已知a∥b,把三角板的直角顶点放在直线b上.若∠1=130°,求∠2的度数.

    发布:2025/5/25 12:30:1组卷:82引用:2难度:0.6
  • 3.如图1,∠DEF=20°,将长方形纸片ABCD沿直线EF折叠成图2,再沿折痕为BF折叠成图3,则图3中∠CFE的度数为(  )

    发布:2025/5/25 11:30:2组卷:2005引用:10难度:0.5
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正