如图①,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;…将余下部分沿∠BnAnC(n为正整数)的平分线AnBn+1折叠,点与点C重合.无论折叠多少次,只要最后一次Bn与点恰好重合,我们就称∠ABC是△ABC的好角.

小丽展示了确定∠BAC是△ABC的好角的两种情形.
情形一:如图②,沿等腰三角形ABC顶角∠BAC是平分线AB1折叠,点B与点重合;
情形二:如图③,沿△ABC的∠BAC的平分线AB1折叠,剪掉重叠部分;将余下的部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.
【探究发现】
(1)如图③,△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?是是.(填:“是”或“不是”)
(2)归纳猜想:
①如图④,小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(∠B>∠C)之间的等量关系,并说明理由.
②根据以上内容猜想:若经过n(n为正整数)次折叠∠BAC是好角,则∠B与∠C(∠B>∠C)之间的等量关系为 ∠B=n∠C∠B=n∠C.(直接写出结论)
【应用提升】
(3)小丽找到一个三角形,三个角分别为15°,60°,105°,发现60°和105°的两个角都是此三角形的好角,如果一个三角形的最小角是18°,请直接写出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.
【考点】三角形综合题.
【答案】是;∠B=n∠C
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/12 6:0:2组卷:76引用:1难度:0.2
相似题
-
1.如图1,已知点B(0,9),点C为x轴上一动点,连接BC,△ODC和△EBC都是等边三角形.
(1)求证:DE=BO;
(2)如图2,当点D恰好落在BC上时.
①求点E的坐标;
②在x轴上是否存在点P,使△PEC为等腰三角形?若存在,写出点P的坐标;若不存在,说明理由;
③如图3,点M是线段BC上的动点(点B,点C除外),过点M作MG⊥BE于点G,MH⊥CE于点H,当点M运动时,MH+MG的值是否发生变化?若不会变化,直接写出MH+MG的值;若会变化,简要说明理由.发布:2025/6/13 6:0:2组卷:1705引用:7难度:0.1 -
2.【阅读】
定义:如果一个三角形有两个内角的差为90°,那么这样的三角形叫做“准直角三角形”.
【理解】
(1)①若∠A=60°,∠B=15°,则△ABC “准直角三角形”;(填“是”或“不是”)
②已知△ABC是“准直角三角形”,且∠C>90°,∠A=40°,则∠B的度数为 .
【应用】
(2)如图,在△ABC中,点D在AC上,连接BD.若BD=AD,AC=18,BC=12,AD:CD=5:13,试说明△ABC是“准直角三角形”.发布:2025/6/13 7:0:2组卷:164引用:4难度:0.3 -
3.小明遇到这样一个问题:△ABC是等边三角形,点D在射线BC上,且满足∠ADE=60°,DE交等边△ABC外角平分线CE于点E,试探究AD与DE的数量关系.
(1)(初步探究)
小明发现,当点D为BC的中点时,如图①,过点D作DF∥AC,交AB于点F,通过构造全等三角形,经过推理论证,能够得到线段AD与DE的数量关系,请直接写出结论;
(2)(类比探究)
当点D是线段BC上(不与点B,C重合)任意一点时,其他条件不变,如图②,试猜想AD与DE之间的数量关系,并证明你的结论;
(3)(拓展应用)
当点D在BC的延长线上时,满足CD=BC,其他条件不变,连接AE,请在图③中补全图形,并直接写出∠AED的大小.发布:2025/6/13 5:30:2组卷:239引用:2难度:0.1