已知函数y=f(x),若存在实数m、k(m≠0),使得对于定义域内的任意实数x,均有m•f(x)=f(x+k)+f(x-k)成立,则称函数f(x)的“可平衡”函数,有序数对(m,k)称为函数f(x)的“平衡“数对.
(1)若m=1,判断f(x)=sinx是否为“可平衡“函数,并说明理由;
(2)若a∈R,a≠0,当a变化时,求证f(x)=x2与g(x)=a+2x的平衡“数对”相同.
(3)若m1、m2∈R,且(m1,π2)(m2,π4)均为函数,f(x)=cos2x(0<x≤π4)的“平衡”数对,求m12+m22的取值范围.
π
2
π
4
<
x
≤
π
4
【考点】函数与方程的综合运用.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:365引用:2难度:0.1