2021年4月3日我校学生在首届少年诗词大会比赛中喜获佳绩,荣获初中组总冠军.海选环节,进入预赛的条件为:电脑随机抽取5首古诗,参赛者能够正确背诵3首及以上的进入预赛.若同学甲参赛,他背诵每一首古诗正确的概率均为23.
(1)求甲进入预赛的概率;
(2)甲同学进入了预赛;此后的比赛采用积分制计算个人成绩,电脑随机抽取3首古诗,每首古诗背诵正确加2分,错误减1分.由于难度增加,甲背诵每首古诗正确的概率为25,设甲的得分为X,请写出X的分布列,并求出甲得分的数学期望.
2
3
2
5
【考点】离散型随机变量的均值(数学期望).
【答案】(1).(2)X的分布列为:
.
64
81
X | 6 | 3 | 0 | -3 |
P | 8 125 |
36 125 |
54 125 |
27 125 |
3
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/12/29 4:30:2组卷:34引用:3难度:0.5
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:201引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7