如图,抛物线y=2x2+bx+c过A(-1,0)、B(3,0)两点,交y轴于点C,连接BC.
(1)求该抛物线的表达式和对称轴;
(2)点D是抛物线对称轴上一动点,当△BCD是以BC为直角边的直角三角形时,求所有符合条件的点D的坐标;
(3)将抛物线在BC下方的图象沿BC折叠后与y轴交于点E,求点E的坐标;
(4)若点N是抛物线上位于对称轴右侧的一点,点M在抛物线的对称轴上,当△BMN为等边三角形时,直接写出直线AN的关系式.

【考点】二次函数综合题.
【答案】(1)抛物线的表达式为y=2x2-4x-6,抛物线对称轴为直线x=1;
(2)所有符合条件的点D的坐标为(1,1)或(1,-);
(3)E(0,-);
(4)直线AN的解析式为y=x+或y=-x-.
(2)所有符合条件的点D的坐标为(1,1)或(1,-
13
2
(3)E(0,-
97
32
(4)直线AN的解析式为y=
3
3
3
3
3
3
3
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/26 2:0:6组卷:349引用:1难度:0.2
相似题
-
1.如图,在抛物线
上取B1(y=-23x2),在y轴负半轴上取一个点A1,使△OB1A1为等边三角形;然后在第四象限取抛物线上的点B2,在y轴负半轴上取点A2,使△A1B2A2为等边三角形;重复以上的过程,可得△A99B100A100,则A100的坐标为32,-12发布:2025/6/14 0:0:1组卷:598引用:19难度:0.5 -
2.如图,一次函数
分别交y轴、x轴于A、B两点,抛物线y=-x2+bx+c过A、B两点.y=-12x+2
(1)求这个抛物线的解析式;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?
(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.发布:2025/6/14 0:30:2组卷:2590引用:62难度:0.5 -
3.如图,在平面直角坐标系中,抛物线y=
x2和直线y=x+m(m>0)交于A、B两点,直线y=x+m交y轴于点E.12
(1)当m=时,求A、B两点的坐标;32
(2)若BE=2AE,求m的值;
(3)当m=时,平行于y轴的直线x=t交直线y=x+m和抛物线于C、D两点,当以O、E、D、C为顶点的四边形是平行四边形时,直接写出t的值.32发布:2025/6/13 23:0:1组卷:189引用:1难度:0.1