“学习强国”学习平台的答题竞赛包括三项活动,分别为“四人赛”“双人对战”和“挑战答题”.在一天内参与“四人赛”活动,每局第一名积3分,第二、三名各积2分,第四名积1分,每局比赛相互独立.在一天内参与“双人对战”活动,每局比赛有积分,获胜者得2分,失败者得1分,每局比赛相互独立.已知甲参加“四人赛”活动,每局比赛获得第一名、第二名的概率均为13,获得第四名的概率为16;甲参加“双人对战”活动,每局比赛获胜的概率为34.
(1)记甲在一天中参加“四人赛”和“双人对战”两项活动(两项活动均只参加一局)的总得分为X,求X的分布列与数学期望;
(2)“挑战答题”比赛规则如下:每位参赛者每次连续回答5道题,在答对的情况下可以持续答题,若第一次答错时,答题结束,积分为0分,只有全部答对5道题可以获得5个积分.某市某部门为了吸引更多职工参与答题,设置了一个“得积分进阶”活动,从1阶到n(n≥10)阶,规定每轮答题获得5个积分进2阶,没有获得积分进1阶,按照获得的阶级给予相应的奖品,记乙每次获得5个积分的概率互不影响,均为56,记乙进到n阶的概率为pn,求p12.
1
3
1
6
3
4
5
6
【考点】离散型随机变量的均值(数学期望).
【答案】(1)分布列见解析,E(X)=.
(2)P12=+.
47
12
(2)P12=
1
6
4
11
[
1
+
(
5
6
)
11
]
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:201引用:1难度:0.6
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:196引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7