汽车尾气排放超标是全球变暖、海平面上升的重要因素.我国近几年着重强调可持续发展,加大在新能源项目的支持力度,积极推动新能源汽车产业迅速发展,某汽车制造企业对某地区新能源汽车的销售情况进行调查,得到下面的统计表:
年份t | 2017 | 2018 | 2019 | 2020 | 2021 |
年份代码x(x=t-2016) | 1 | 2 | 3 | 4 | 5 |
销量y/万辆 | 10 | 12 | 17 | 20 | 26 |
(2)为了解购车车主的性别与购车种类(分为新能源汽车与传统燃油汽油车)的情况,该企业随机调查了该地区200位购车车主的购车情况作为样本,其中男性车主中购置传统燃油汽车的有ω名,购置新能源汽车的有45名,女性车主中有20名购置传统燃油汽车.
①若ω=95,将样本中购置新能源汽车的性别占比作为概率,以样本估计总体,试用(1)中的线性回归方程预测该地区2023年购置新能源汽车的女性车主的人数假设每位车主只购买一辆汽车,结果精确到千人);
②设男性车主中购置新能源汽车的概率为p,若将样本中的频率视为概率,从被调查的所有男性车主中随机抽取5人,记恰有3人购置新能源汽车的概率为f(p),求当w为何值时,f(p)最大.
附:
̂
y
=
̂
b
x
+
̂
a
̂
b
=
n
∑
i
=
1
x
i
y
i
-
n
x
•
y
n
∑
i
=
1
x
2
i
-
n
x
2
,
̂
a
=
y
-
̂
b
x
【考点】经验回归方程与经验回归直线.
【答案】(1)y关于x的线性回归方程为=4x+5,该地区新能源汽车的销量最早在2028年能突破50万辆;
(2)①该地区2023年购置新能源汽车的女性车主的人数为15.5万人;
②当ω为30名时,f(p)最大为.
̂
y
(2)①该地区2023年购置新能源汽车的女性车主的人数为15.5万人;
②当ω为30名时,f(p)最大为
216
625
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:349引用:7难度:0.5
相似题
-
1.某科研机构为了了解气温对蘑菇产量的影响,随机抽取了某蘑菇种植大棚12月份中5天的日产量y(单位:kg)与该地当日的平均气温x(单位:℃)的数据,得到如图散点图:
其中A(3,2),B(5,10),C(8,11),D(9,13),E(10,14).
(1)求出y关于x的线性回归方程;
(2)若该地12月份某天的平均气温为6℃,用(1)中所求的回归方程预测该蘑菇种植大棚当日的产量.
附:线性回归直线方程中,̂y=̂bx+̂a,̂b=n∑i=1xiyi-nxyn∑i=1x2i-nx2.̂a=y-̂bx发布:2024/12/29 11:30:2组卷:104引用:3难度:0.7 -
2.两个线性相关变量x与y的统计数据如表:
x 9 9.5 10 10.5 11 y 11 10 8 6 5 =̂yx+40,则相应于点(9,11)的残差为 .̂b发布:2024/12/29 12:0:2组卷:116引用:8难度:0.7 -
3.某农科所对冬季昼夜温差(最高温度与最低温度的差)大小与某反季节大豆新品种一天内发芽数之间的关系进行了分析研究,他们分别记录了12月1日至12月6日每天昼夜最高、最低的温度(如图1),以及实验室每天每100颗种子中的发芽数情况(如图2),得到如下资料:
(1)请画出发芽数y与温差x的散点图;
(2)若建立发芽数y与温差x之间的线性回归模型,请用相关系数说明建立模型的合理性;
(3)①求出发芽数y与温差x之间的回归方程(系数精确到0.01);̂y=̂a+̂bx
②若12月7日的昼夜温差为8℃,通过建立的y关于x的回归方程,估计该实验室12月7日当天100颗种子的发芽数.
参考数据:=2051,6∑i=1xi=75,6∑i=1yi=162,6∑i=1xiyi≈4.2,6∑i=1xi2-6x2≈6.5.6∑i=1yi2-6y2
参考公式:
相关系数:r=(当|r|>0.75时,具有较强的相关关系).n∑i=1xiyi-nx•y(n∑i=1xi2-nx2)(n∑i=1yi2-ny2)
回归方程中斜率和截距计算公式:̂y=̂a+̂bx=̂b,n∑i=1xiyi-nx•yn∑i=1xi2-nx2=̂ay-̂b.x发布:2024/12/29 12:0:2组卷:189引用:5难度:0.5
相关试卷