为方便师生行动,我校正实施翔宇楼电梯加装工程.我们借此构造了以下模型:已知正四棱柱ABCD-A1B1C1D1,它抽象自翔宇楼南侧楼心花园所占据的空间,设AB=BC=8,AA1=12,O为底面ABCD的中心,正四棱柱OECF-O1E1C1F1与正四棱柱OECF-O2E2C2F2分别代表电梯井与电梯厢,设OO2=2,M为棱FF1的中点,N,K分别为棱AA1,DD1上的点,AN=8,DK=4.
(I)求证:OM∥平面A1CF1;
(Ⅱ)求直线A1O与平面A1CF1所成角的正弦值;
(Ⅲ)“你站在桥上看风景,看风景的人在楼上看你.明月装饰了你的窗子,你装饰了别人的梦.”卞之琳诗句中的情景其实正在我们的生活中反复上演,上官琐艾同学站在楼心花园的中心(O点),她正目送着倚立在电梯厢一角的欧阳南德同学,假定上官同学的目光聚焦于棱OO2的中点I,此时,电梯厢中欧阳同学的目光正徘徊在位于N点的数学办公室与位于K点的数学实验室,当电梯厢向上启动时,在这时空里便诞生了由点O与移动着的平面INK所勾勒的动人风景.现在,请作为“正在看风景的人”的你完成以下问题:当电梯厢自底部(平面OECF与平面ABCD重合)运行至顶端(平面O2E2C2F2与平面A1B1C1D1重合)的过程中,点O到平面INK距离的最大值.
【答案】(Ⅰ)证明过程见解答;
(Ⅱ);
(Ⅲ).
(Ⅱ)
3
11
77
(Ⅲ)
4
70
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:128引用:3难度:0.3
相似题
-
1.如图,AB为圆O的直径,点E,F在圆上,AB∥EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,EF=1.
(Ⅰ)求证:BF⊥平面ADF;
(Ⅱ)求BF与平面ABCD所成的角;
(Ⅲ)在DB上是否存在一点M,使ME∥平面ADF?若不存在,请说明理由;若存在,请找出这一点,并证明之.发布:2025/1/20 8:0:1组卷:23引用:3难度:0.3 -
2.AB为圆O的直径,点E,F在圆上,AB∥EF,矩形ABCD所
在平面与圆O所在平面互相垂直,
已知AB=2,EF=1.
(1)求证:BF⊥平面DAF;
(2)求BF与平面ABCD所成的角;
(3)若AC与BD相交于点M,
求证:ME∥平面DAF.发布:2025/1/20 8:0:1组卷:29引用:3难度:0.1 -
3.如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.
(1)求证:BC⊥平面PAC;
(2)设Q为PA的中点,G△AOC的重心,求证:QG∥平面PBC.
(3)若AC=BC=,PC与平面ACB所成的角为3,求三棱锥P-ACB的π3
体积.发布:2025/1/20 8:0:1组卷:73引用:1难度:0.7