某医院为筛查某种疾病,需要检验血液是否为阳性,现有n(n∈N*)份血液样本,有以下两种检验方式:①逐份检验,需要检验n次;②混合检验,将其k(k∈N*)且k≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为k+1次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(0<p<1).
(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验的方式,求恰好经过3次检验就能把阳性样本全部检验出来的概率;
(2)现取其中k(k∈N*且k≥2)份血液样本,记采用逐份检验方式,样本需要检验的总次数为ξ1,采用混合检验方式,样本需要检验的总次数为ξ2.
①记E(ξ)为随机变量ξ的数学期望.若E(ξ1)=E(ξ2),运用概率统计的知识,求出p关于k的函数关系式p=f(k),并写出定义域;
②若p=1-e-14,且采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k的最大值.
参考数据:ln2≈0.6931,ln3≈1.0986,ln5≈1.6094.
-
1
4
【考点】离散型随机变量的均值(数学期望).
【答案】(1);(2)①p=(k∈N*且k≥2);②8.
3
10
1
-
(
1
k
)
1
k
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:372引用:4难度:0.5
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:195引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7