直线CD经过∠BCA的顶点C,CA=CB.E、F分别是直线CD上两点,且∠BEC=∠CFA=∠α.
(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,∠α=90°,则EF ==|BE-AF|(填“>”,“<”或“=”号);
②如图2,若0°<∠BCA<180°,若使①中的结论仍然成立,则∠α与∠BCA应满足的关系是 ∠α+∠BCA=180°∠α+∠BCA=180°;
(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请探究EF、与BE、AF三条线段的数量关系,并给予证明.

【考点】全等三角形的判定与性质.
【答案】=;∠α+∠BCA=180°
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:857引用:10难度:0.5
相似题
-
1.如图,∠B=∠E=90°,AC=DF,BF=EC,则除条件以外,相等的线段还有 .
发布:2025/6/17 15:30:1组卷:67引用:2难度:0.5 -
2.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,试问:DE和DF相等吗?说明理由.
发布:2025/6/17 15:30:1组卷:919引用:22难度:0.5 -
3.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,∠EAF=
∠BAD,若DF=1,BE=5,则线段EF的长为( )12发布:2025/6/17 16:30:1组卷:1078引用:5难度:0.5