【探究】
(1)如图1,∠ADC=120°,∠BCD=130°,∠DAB和∠CBE的平分线交于点F,则∠AFB=3535°;
(2)如图2,∠ADC=α,∠BCD=β,且α+β>180°,∠DAB和∠CBE的平分线交于点F,则∠AFB=12α+12β-90°12α+12β-90°;(用α、β表示)
(3)如图3,∠ADC=α,∠BCD=β,当∠DAB和∠CBE的平分线AG、BH平行时,α、β应该满足怎样的数量关系?请证明你的结论.

【挑战】
如果将(2)中的条件α+β>180°改为α+β<180°,再分别作∠DAB和∠CBE的平分线,你又可以找到怎样的数量关系?画出图形并直接写出结论.
1
2
α
+
1
2
β
-
90
°
1
2
α
+
1
2
β
-
90
°
【答案】35;
1
2
α
+
1
2
β
-
90
°
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:5590引用:9难度:0.3