数学活动
在上个月,我们学习了“有理数乘方”运算,知道乘方的结果叫做“幂”,下面介绍一种有关“幂”的新运算,定义:am与an(a≠0,m、n都是正整数)叫做同底数幂,同底数幂除法记作am÷an.
运算法则如下:
am÷an=当m>n时,am÷an=am-n 当m=n时,am÷an=1 当m<n时,am÷an=1an-m
解决问题
根据“同底数幂除法”的运算法则,回答下列问题:
(1)填空:(14)4÷(14)2=116116,23÷26=1818;
(2)如果3÷33x-4=127,求出x的值;
(3)如果(7-2x)5x-1÷(7-2x)x+7=1,请直接写出x的值.
当 m > n 时 , a m ÷ a n = a m - n |
当 m = n 时 , a m ÷ a n = 1 |
当 m < n 时 , a m ÷ a n = 1 a n - m |
1
4
1
4
1
16
1
16
1
8
1
8
1
27
【考点】因式分解的应用.
【答案】;
1
16
1
8
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:285引用:4难度:0.8
相似题
-
1.若一个整数能表示成a2+b2(a、b是整数)的形式,则称这个数为“完美数”,
例如,5是“完美数”.因为5=22+12.
再如,M=5x2+5y2=x2+y2+4x2+4y2
=x2+y2+4x2+4y2+4xy-4xy
=(x+2y)2+(2x-y)2(x、y是整数),所以M也是“完美数”.
(1)请你再写出一个小于20的“完美数”;
(2)判断9x2+1+4y2-12xy(x,y是整数)是否为“完美数”;并说明原因.发布:2025/6/8 22:30:1组卷:69引用:1难度:0.7 -
2.如果一个自然数M能分解成a×A,其中a为一位数,A为两位数,且a与A的十位数字的和等于A的个位数字,则称数M为“和数”,将“和数”分解成M=a×A的过程,称为“和分解”,若a与A的十位数字的差等于A的个位数字,则称数M为“差数”,将“差数”分解成M=a×A的过程,称为“差分解”.
例如:∵245=5×49,5+4=9,∴245为“和数”,
∵205=5×41,5-4=1,∴205为“差数”.
又如∵195=3×65=5×39,3+6≠5,5+3≠9,且3-6≠5,5-3≠9,∴195既不是“和数”也不是“差数”.
(1)判断236是“和数”吗?115是“差数”吗?并说明理由;
(2)将一个“和数”M进行“和分解”,即,(1≤m≤8,1≤a≤8,2≤b≤9,m,a,b都为整数),将一个“差数”N进行“差分解”,即M=m×ab,(2≤n≤9,1≤a≤8,1≤c≤8,n,a,c都为整数),记P(M)=m+a+b,P(N)=n+a+c,若N=n×ac能被3整除,求出所有满足题意的M的值.P(M)P(N)发布:2025/6/9 1:30:1组卷:86引用:2难度:0.4 -
3.若实数x满足x2-x-1=0,则代数式x3-2x2+2023的值为 .
发布:2025/6/9 3:30:1组卷:527引用:6难度:0.6