当前位置:
试题详情
让我们一起来探究“边数大于或等于3的多边形的内角和问题”.
规定:连接多边形不相邻的两个顶点的线段叫做多边形的对角线.
尝试:从多边形某一个顶点出发的对角线可以把一个多边形分成若干个三角形,…….这样,就把“多边形内角和问题”转化为“三角形内角和问题”了.……
(1)请你在下面表格中,试一试,做一做,并将表格补充完整:
名称 | 图形 | 内角和 |
三角形 |
![]() |
180° |
四边形 |
![]() |
2×180°=360° |
五边形 |
![]() |
|
六边形 |
![]() |
|
… | … | …… |
900°
900°
;…….如果一个多边形有n条边,请你用含有n的代数式表示这个多边形的内角和(n-2)180°
(n-2)180°
.(3)如果一个多边形的内角和是1260°,请判断这个多边形是几边形.
【考点】四边形综合题.
【答案】900°;(n-2)180°
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/11/4 8:0:2组卷:62引用:1难度:0.2
相似题
-
1.阅读下面材料.
小炎遇到这个一个问题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.
小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中,她先尝试了翻折、旋转、平移的方法,最后发现线段AB、AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决这个问题(如图2).
参考小炎同学思考问题的方法,解决下列问题:
(1)写出小炎的推理过程;
(2)如图3,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,则当∠B与∠D满足于 关系时,仍有EF=BE+DF;
(3)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1,EC=2,求DE的长.发布:2025/6/10 11:30:1组卷:291引用:2难度:0.2 -
2.如图,矩形ABCD中,AB=4,AD=3,点E在折线BCD上运动,将AE绕点A顺时针旋转得到AF,旋转角等于∠BAC,连接CF.
(1)当点E在BC上时,作FM⊥AC,垂足为M,求证:AM=AB;
(2)当AE=3时,求CF的长;2
(3)连接DF,点E从点B运动到点D的过程中,试探究DF的最小值.发布:2025/6/10 11:30:1组卷:3953引用:8难度:0.1 -
3.如图,在矩形ABCD中,E是BC上一动点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G,AB=3,AD=4.
(1)如图1,当∠DAG=30°时,求BE的长;
(2)如图2,当点E是BC的中点时,求线段GC的长;
(3)如图3,点E在运动过程中,当△CFE的周长最小时,直接写出BE的长.发布:2025/6/10 12:30:1组卷:1237引用:11难度:0.3